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The emergency response problem

The problem: Respond Efficiently to all incidents spread over a 
large geographical area with limited resources.

This is all traffic incidents occurring in Davidson County In 
January 2018, with a sliding window of ~12 hours worth of 
incidents shown at once. 



The emergency response problem

Current State of the art is reactive. Respond when the call arrives.

Accidents over 5 year period

Receive 911 call

Responder Returns to Assigned Station 
– Now Available for Dispatch Again

Service Incident (Possibly go to Hospital)

Dispatch Nearest Responder by 
Euclidean Distance



The Proactive 
Approach to 
Emergency 
Response 
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Develop Online 
Models to Estimate 

Demand

Anticipatory 
Stationing of 

Resources
Optimal Dispatch

Active Learning and Improvement Mechanisms



Anticipating Demand

• GOAL : Learn a probability distribution 
f(t|w)

• Given: a finite set of grids over a 
geographical region, and a dataset D of 
time-stamped incidents.

• D : {{x1,w1}, {x2,w2},…, {xn,wn}}
• where x is time of occurrence, and 

wi is a set of features associated 
with the ith incident

• Features: Past rate of incidents, 
weather condition in the area, speed 
limit etc. Nashville depots overlaid on incident density map



Online Incident Likelihood Estimation

• We use survival analysis - a class of 
methods to find inter-arrival times.

• Inter-arrival time: ti = xi – xi-1 
• We use Maximum Likelihood 

Estimation to estimate parameters.
• However, accidents often cascade 

and the survival model has to be 
updated online.

• Let D’ represent a stream of new 
incidents.

• Assume that βp is already known.
• Our goal is to update βp to βp+1 

without re-learning the entire 
model.

• We take gradient steps for each 
parameter based on D’
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Prediction Example

• Comparison of 
(1) incidents 
predicted by 
model (left), and 
(2) real incident 
distribution 
(right) over 
January 2019



Resource Assignment
• Goal: allocate EMS resources to optimize total 

response times to incidents
• Considerations: 

• Decision must be made quickly at the time of 
an incident

• Optimizing over responder distribution and 
response as a multi-objective optimization 
problem is typically computationally 
infeasible. 

• Example: let the number of responders 
r=20, and the number of possible depot 
locations be d=30. Possible actions for 
dispatching is the number of responders 
-> 20

• Possible actions for allocation is P(d, r) = 
30!/10!

Rather than building a monolithic, large search tree exploring 
all possible system states, each agent builds an individual tree 
focusing on the subset of actions relevant to them – i.e. their 
rebalancing action 



Resource Assignment
• Each agent a builds own general 

Monte Carlo Search Tree with a few 
extensions

• Expansion: 
• Action space includes all 

relevant actions for a (a
responding to an incident, 
moving to a new station, etc.)

• Other agents’ actions are assumed to 
follow some static policy to reduce 
action space. Examples include: 

• Naïve - agents are stationary
• Greedily follow heuristic 

(M/M/c queue model 
response time, etc.) 



Results
Key

MR-1 and MR-2 are two separate Hyper-parameter strategies. MR-1 is discounts the distance moved. 
The results show almost 3 minutes of response time saving.
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• We discussed mechanisms to anticipate demand and then 
rebalance resources

• This problem is  not unique to emergency response and 
applies to other transportation systems such as public 
transit and micro-transit.

• The challenges still exist.
• Is the data we are learning from correct?
• How should we handle concept drift?
• Do the cities have enough computation power to 

handle these big data driven processes?
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