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Our communities are being stressed

Davidson County

Acoessibility Index by Census Blook Group
Index measures the accessibilty of jabs using only public transit
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Cyber-Physical System Science as a Solution

CPS = Computation Software + Physical system + Networks + Human + Closed-loop
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Cyber-Physical System Science as a Solution

CPS = Computation Software + Physical system + Networks + Human + Closed-loop
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Cyber-Physical System Science as a Solution

CPS = Computation Software + Physical system + Networks + Human + Closed-loop
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Cyber-Physical System Science as a Solution

CPS = Computation Software + Physical system + Networks + Human + Closed-loop
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The Emergency
Response
Problem




The emergency response problem
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This is all traffic incidents occurring in Davidson County In The problem: Respond Efficiently to all incidents spread over a
January 2018, with a sliding window of ~12 hours worth of large geographical area with limited resources.
incidents shown at once.
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The emergency response problem

Receive 911 call

v . _ X _.N.:a.sj'l\fi“e
Dispatch Nearest Responder by 5§
Euclidean Distance

\ 4

Service Incident (Possibly go to Hospital)

\ 4

Responder Returns to Assigned Station
— Now Available for Dispatch Again

Accidents over 5 year period

Current State of the art is reactive. Respond when the call arrives.
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S The Proactive
W 1 Approach to
Sy Emergency
Response
Problem

Develop Online Anticipatory
Models to Estimate Stationing of

Demand Resources

Optimal Dispatch

Active Learning and Improvement Mechanisms

tegrated Systems

ary research with global impact.
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Anticipating Demand

e GOAL : Learn a probability distribution
flt/w)
e Given: a finite set of grids over a

geographical region, and a dataset D of
time-stamped incidents.

* D:{{x,wi} oWl ..., (X, W,
e where x is time of occurrence, and
w;, is a set of features associated
with the ithincident

e Features: Past rate of incidents,
weather condition in the area, speed
limit etc.

Nashville depots overlaid on incident density map
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Online Incident Likelihood Estimation

e We use survival analysis - a class of ] E :
methods to find inter-arrival times. og BJ wj + €

e Inter-arrival time: t. = x,—x,_,
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Online Incident Likelihood Estimation

e We use survival analysis - a class of ] E :
methods to find inter-arrival times. og BJ wj + €

* Inter-arrival time: t, = x;, — x|

e We use Maximum Likelihood L = H h(log(tz‘) — 5W)

Estimation to estimate parameters.
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Online Incident Likelihood Estimation

e We use survival analysis - a class of 10 E : W €
methods to find inter-arrival times. g BJ i

* Inter-arrival time: t, = x;, — x|

e We use Maximum Likelihood L = H h(log(tz') — 6W)

Estimation to estimate parameters.

e However, accidents often cascade
and the survival model has to be
updated online.

Probabilistic Model for Incident Prediction
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Online Incident Likelihood Estimation

* We use survival analysis - a class of
methods to find inter-arrival times.

* Inter-arrival time: t, = x;, — x|
* We use Maximum Likelihood
Estimation to estimate parameters.

e However, accidents often cascade
and the survival model has to be
updated online.

* Let D’ represent a stream of new
incidents.

e Assume that P is already known.

 Our goal is to update P to BP*!
without re-learning the entire
model.

* We take gradient steps for each
parameter based on D’

log(t;) = » Bjw; + ¢
j

L = H h(log(t;) — BW)

Probabilistic Model for Incident Prediction

P+l = P 4 oV L(BP,D')

Online Update of Coefficients

k 3% w,
g—ﬁLj =iy —wij + wij{ellosTim )

Gradient Calculation

Institute for Software Integrated Systems

World-class, interdisciplinary research with global impact.

V7| VANDERBILT UNIVERSITY




Prediction Example

e Comparison of
(1) incidents
predicted by
model (left), and
(2) real incident
distribution
(right) over
January 2019
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Resource Assignment

e Goal: allocate EMS resources to optimize total
response times to incidents

e Considerations:

e Decision must be made quickly at the time of

an incident

e Optimizing over responder distribution and
response as a multi-objective optimization
problem is typically computationally
infeasible.

 Example: let the number of responders
r=20, and the number of possible depot
locations be d=30. Possible actions for
dispatching is the number of responders
-> 20

 Possible actions for allocation is P(d, r) =
30!/10!

Partially Decentralized Decision Process

Incident Environment

Traffic
Model

Router Router Router

Filter

Recommendations
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Rather than building a monolithic, large search tree exploring
all possible system states, each agent builds an individual tree
focusing on the subset of actions relevant to them —i.e. their
rebalancing action




Resource Assignment

Partially Decentralized Decision Process

Incident Environment

e Each agent a builds own general

Monte Carlo Search Tree with a few incident Qg Teffic
extensions -
e Expansion:

e Action space includes all
relevant actions for a (a
responding to an incident,
moving to a new station, etc.)

e Other agents’ actions are assumed to
follow some static policy to reduce
action space. Examples include:

* Naive - agents are stationary

e Greedily follow heuristic
(M/M/c queue model - L
response time, etc.) Policy Policy

v
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Key

Results

Incident Response Times Distance Moved per Responder each Balancing Step
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Response times (Minutes) Distance Moved (Miles)

MR-1 and MR-2 are two separate Hyper-parameter strategies. MR-1 is discounts the distance moved.
The results show almost 3 minutes of response time saving.
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Conclusion
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Information Decision

Presentation Support
Systems: Big
Data Analytics

We discussed mechanisms to anticipate demand and then
rebalance resources
This problem is not unique to emergency response and
applies to other transportation systems such as public
transit and micro-transit.
The challenges still exist.

* |sthe data we are learning from correct?

 How should we handle concept drift?

* Do the cities have enough computation power to

handle these big data driven processes?
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