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ABSTRACT

Emergency response is one of the most pressing problems faced by
communities across the globe. It is also one of the most important
engagements of governments. In the last fifty years, developing
statistical, analytical and algorithmic approaches to design emer-
gency response management (ERM) systems has garnered a lot of
attention. An ERM pipeline is an intricate combination of several
modular sub-components that need to be individually understood
in order to make the overall system work. We have identified sev-
eral key challenges and worked on different components of the
ERM pipeline. A major hurdle for widespread adoption of state-of-
the-art ERM techniques is the lack of an integrated, ready-to-use
ERM toolset that allows policy makers to directly compare various
techniques and visualize their impact. We are developing such an
open-source toolset, the first of its kind, which integrates four ma-
jor components of ERM - incident forecasting, strategic (long term)
resource allocation, dynamic resource allocation, and dispatch - in
a ready to use package. In this paper, we highlight our work on
alleviating some of the major challenges of that ERM faces today,
and talk about how such approaches are integrated in our tool.
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1 INTRODUCTION

Emergency response management (ERM) is a critical problem faced
by communities across the globe. First-responders are constrained
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by limited resources, and must attend to different types of inci-
dents like traffic accidents, fires, crime, and distress calls. Incident
response is further complicated by the constraint that quick and
timely service is essential. Indeed, it has been noted that the odds of
survival of the patient varies non-linearly with response times [1,
2]. As a consequence, statistical and algorithmic approaches to
emergency response have received significant attention in the last
few decades. Governments in urban areas are increasingly adopting
methods that enable smart emergency response, which are a combi-
nation of forecasting models and visualization tools to understand
where and when incidents occur, and optimization approaches to
allocate and dispatch responders.

The key components of an ERM pipeline are: (1) Incident forecast-
ing — understanding where and when incidents occur , (2) Long-term
resource allocation — strategic decisions on long-term resource place-
ment, such as how many stations and vehicles to acquire and where
to build said stations , (3) Dynamic resource allocation — short term
operational decisions such as rebalancing vehicle allocations based
on current demands , and (4) Dispatching — policy for deploying
responders when an incident is reported.

While there has been significant research on each individual
component of ERM [3, 4], a key limitation of canonical approaches
in ERM is that they look at each component separately. The over-
all functioning of an ERM system is however entirely dependent
upon the intricate dependencies of the components. In this paper,
we summarize our prior and current work on designing an inte-
grated emergency response pipeline. Specifically, we explain our
work on online incident forecasting and algorithmic approaches
to decentralized multi-agent response. We highlight how the in-
dividual components improve upon the state-of-the-art, and also
discuss how they are integrated. Finally, we highlight our efforts
on creating an open-source integrated emergency response tool,
the first of its kind, that enables first-responder organizations to
access the state-of-the-art algorithmic and modeling advancements
in emergency response.

2 PROBLEM SETUP

Our goal is to develop a generic ERM pipeline that can be used by
policy makers across the globe. ERM is typically a major problem
in urban communities, which are examples of dynamic, continuous-
time, and stochastic environments. We make several assumptions
on the problem structure and information provided a-priori. First,
we assume that the spatial area under consideration is segmented
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into a set of discretized units G. This discretization can either con-
sist of a grid of equally sized cells, or a graph of roadway segments.
Second, we assume that for each spatial unit, the temporal distri-
bution of incidents is homogeneous. Our third assumption is that
emergency responders can wait in a fixed collection of depots D, a
subset of cells that are analogous to fire-stations. Each depot d € D
has a fixed capacity C(d) of responders that it can accommodate
at a time. We assume that when an incident happens, a free re-
sponder (if available) is dispatched to the site of the incident. Once
dispatched, the time to service consists of two parts — 1) time taken
to travel to the scene of the incident, and 2) time taken to attend to
the incident. If no free responders are available, then the incident
enters a waiting queue.

We consider two major parts of the ERM model in this paper.
First, we assume that the spatial-temporal occurrence of the inci-
dents can be represented by the function f(x | w), where x is a
random variable that represents a measure of incident occurrence
(count of incidents or time between incidents for example), and
w € R™ is a set of spatio-temporal features. Historically, f has
been modeled by both probabilistic models (a Poisson distribution,
for example), or regression approaches without direct probabilistic
interpretations (linear regression, for example). Second, we consider
that the control problem involved in an ERM pipeline can be mod-
eled as a Multi-Agent Semi-Markov Decision Process (M-SMDP)
[5, 6, 7], which can be represented by the tuple An SMDP system
can be described by the tuple (A, S, A, P, T, p(i,a), T), where A is
a finite collection of agents and A; € A denotes the j™ agent. The
action space of the j™ agent is represented by A j,and A =17, A;
represents the joint action space. We assume that the agents are
cooperative and work to maximize the overall utility of the system.
S is a finite state space of the problem, P is the state transition
function and T denotes the temporal transition and p represents
the reward function. Transitions in ERM depend on several random
variables, including incident arrival, travel times of responders,
and service times, and cannot be typically modeled in closed-form
expressions [5].

A major problem with principled dispatching approaches is that
they evaluate decisions post-incident. This explains why first re-
sponders rarely use such approaches in practice, since in situations
where time is of the essence, moral constraints dictate that the
closest responder be dispatched to the scene of the incident. To this
end, we propose dynamically rebalancing the spatial distribution
of responders between incidents. We explain how the M-SMDP
formulation accommodates this in section 4.

The overall goal of the pipeline is therefore two-fold - first, given
a set of historical incidents and associated spatio-temporal features,
the decision-maker seeks to learn f(x | w), and secondly, she
seeks to find an optimal policy for the stochastic control problem
represented by the SMDP.

3 INCIDENT FORECASTING
3.1 Data Aggregation and Clustering

A challenge in learning incident prediction models is data sparsity.
An arbitrary spatial unit is unlikely to experience any incident
on any particular time-period. The sparsity, combined with high
data dimensionality makes model inference difficult. Learning one

model for G ignores similarities in incident occurrence that are not
explicitly captured by the feature space, while learning one model
per member of G results in over-fitting.

A technique to address this is to combine similar spatial units
into groups using clustering techniques, with the hypothesis that
similar units will have similar incident distributions. Incident mod-
els can then be trained on each group rather than on each unit. To
this end, we categorize the feature set w into static and dynamic
features [8]. Static features capture covariates that do not change
(or stay relatively similar) with time, while dynamic features change
over time. Static features for traffic accident analysis can include the
curvature of the road, roadway type (e.g. highway, major surface
road, or residential), the speed limit, and so on. Aggregated dynamic
features can also be used as a static feature, such as mean traffic
observed on the roadway. The set of static features can be used to
cluster spatial units into groups of similar units. Once spatial units
are grouped, dynamic features are used to learn a forecasting model
over incident arrival. Dynamic features include weather, traffic, and
past incidents occurring in the spatial unit or adjacent units.

The accuracy of the learned models depends on the specific
grouping of units used, making their construction important. Clus-
tering is a highly interactive analytic task; often, it has several
metrics for determining what grouping is best. We propose an in-
teractive visual analytics tool to help analysts compare different
clustering techniques and their hyperparameter choices. There are
two goals of this tool. First, we seek to integrate clusters with a
geo-spatial data view to help analysts understand how clusters are
distributed on the roadway network, which is important for under-
standing their underlying characteristics. Secondly, we integrate
the cluster visualization and incident forecasting models into one
cohesive tool.

Figure 1 shows the method selection and map views from a pro-
totype of this tool. Users are able to select from several different
clustering runs using different clustering techniques and hyperpa-
rameters. The tool currently supports k-means, DBSCAN, spectral
clustering, and hierarchical clustering techniques. Users can quickly
compare key clustering metrics for each run, including their sil-
houette coefficients [9], Calinski-Harabasz indices [10], and Davies-
Bouldin indices [11]. Once a run is selected, users can directly see
the cluster assignments for each segments and their geo-spatial
distribution.

Another challenge that affects building and deployment of ERM
pipelines is the extraction and processing of the myriad features that
affect incident occurrence, which is complex and time-consuming.
We integrate feature processing directly into our tool by enabling
end-users to connect with weather data API-s, and by providing
approaches to process features. Such capability is important, since
data analysis and software development skills needed for feature
extraction cannot be expected of all ERM policy makers. We think
that it is crucial that tools designed for emergency response enable
choosing and extracting features of interest; without such capabil-
ity, tools are often times not used to their fullest potential, thus
increasing the gap between theory and practice in this field.

To illustrate an example of complex feature extraction, we demon-
strate how we compute curvature of roadway segments. Curvature
represents the change in angle when an object traverses the curve,
and is known to be an important predictor of accident rates [12, 13].
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Figure 2: A Schematic view of a curve and its imitation

Despite this, accident prediction methodologies in the field often do
not use curvature as a feature, since it is lacks an off-the-shelf data
source. In practice, one lacks explicit mathematical formulations
of roadways, and curvature must be estimated using the available
sample points.

To estimate curvature, we fit a spline through the sample points,
which provides an explicit function for the geometry of the roadway.
Consequently, the curvature at any point on the roadway can be
estimated. Figure 2 shows a sample sinusoidal wave (represented
by the blue line), and a set of random sample points on it (shown
by the blue dots). It also shows the predicted sinusoidal wave (the
red line) by employing the proposed method.

3.2 Modeling

Formally, we want to learn a probability distribution over incident
arrival in space and time. Our tool supports multiple forecasting
models, but we leverage our prior work with survival modeling
to explain how spatio-temporal models of incident occurrence are
learned. Survival models have proven to be extremely effective in
predicting incidents like crimes and traffic accidents [14, 8, 5]. A
parametric survival model over incident arrival can be represented
as f(z]y(w)). In such a formulation, f is the probability distribution
for a continuous random variable 7 representing the inter-arrival
time, which typically depends on covariates w via the link function
y- The link function is typically logarithmic. The optimal model
parameters f* can be estimated by the principled procedure of
Maximum Likelihood Estimation (MLE).

A limitation of such an approach is that it is offline. However,
it is imperative to capture the latest trends in incident arrival to
accurately predict future incidents, which motivates us to design
an online approach for learning and predicting incidents. Consider
a set of incidents D used to learn the model parameters *. Now,
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Figure 3: Heatmaps comparing average incident rates for the
forecasting model (left) with actual incidents in Nashville,
TN (right)

consider that a set of incidents D = {(x'l, w1), (x'z, w2), . (x;c, wi)}
is available, which consists of incidents that have happened after (in
time) the original set of incidents. We aim to update the regression
coefficients f using D, assuming that the model already has access
to f*.

In order to address this problem, we use stochastic gradient
descent to update the distribution f in an online fashion [15]. For-
mally, we start with the known coefficients f* and, at any iteration
p of the process, we use the following update rule

B = BP 4+ aVL(BP, D)

where V(L(f", D/) is the gradient of the log-likelihood function
calculated using D at PP and « is the standard step-size parameter
for gradient based algorithms. The regression parameter is updated
iteratively based on a predefined convergence criteria.

Figure 3 visualizes the performance of such a survival model by
comparing a heatmap of mean predicted incident rates with the
actual incident distribution of Nashville, TN between 1-1-2018 and
1-1-2019. This model used features such as weather and previous
nearby incidents (to model incident cascades).

4 DYNAMIC RESOURCE ALLOCATION

Dynamic resource allocation is a complex problem which requires
solutions that can cope with extremely large state spaces. One
possible approach is to directly solve the SMDP model by estimating
the transition function [5]. Unfortunately this approach is too slow
for dynamically rebalancing the distribution of responders, which
for an average-sized metropolitan area, has a cardinality of 102
[6].

We examine the Monte-Carlo Tree Search (MCTS) family of algo-
rithms, which evaluate actions by sampling from a large number of
possible scenarios. A standard MCTS-based approach is not suitable
for dynamic allocation due to the sheer size of the state-space in
consideration coupled with the low latency that ERM systems can
afford. Therefore, we focus on a decentralized multi-agent MCTS
(MMCTS) approach explored by Claes et. al [16] for multi-robot
task allocation during warehouse commissioning. In MMCTS, in-
dividual agents build separate trees focused on their own actions,
rather than having one monolithic, centralized tree, dramatically
reducing their search space. To realize MMCTS for an ERM domain,
some extensions need to be made to standard UCT [17]. Agents
must have an accurate yet computationally cheap model of other
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Identifier Description Hyper-Parameter Choices
BASE Greedy Baseline Without Rebalancing N/A
MMCTS - Béselme MCTS Iteration Limit = 250
The foundation for the parameter search. . .
Each parameter varies independently while Lookahead Horizon = 120 min
M-1 P . P y Reward Distance Weight i = 10
other parameters retain these values. .
. . - Reward Discount Factor = 0.99995
(All M-* experiments use generated incident . .
. X . Rebalance Period = 60 min
chains and a Static Agent Policy)
M-2 MMCTS - Iteration Limit of 100 MCTS Iteration Limit = 100*
M-3 MMCTS - Iteration Limit of 500 MCTS Iteration Limit = 500*
M-4 MMCTS - Reward Distance Weight ¢ of 0 Reward Distance Weight ¢ = 0*
M-5 MMCTS - Reward Distance Weight ¢ of 100 | Reward Distance Weight ¢ = 100*
M6 MMCTS - Rebalance Period of 30 minutes; Lookahead Horizon = 30 min
Lookahead Horizon of 30 minutes Rebalance Period = 30min*

Table 1: Outline of the experimental runs performed and their cor-
responding hyper-parameter choices. (“When not indicated, param-
eters are set to values of M-1, the MMCTS Baseline in the table.)

agents’ behavior. To this end, we use an queue-based rebalancing
heuristic (described in [6]) to approximate agent behavior.

Another extension we make to standard MCTS approaches is ac-
tion filtering. The dispatching domain has several global constraints
to adhere to, such as ensuring that an incident is serviced if possible.
We propose a filtering step be added to the MMCTS workflow. Once
each individual agent has scored and ranked each possible action,
these are sent to a centralized filter that chooses the final actions for
each agent to maximize utility without breaking any constraints.

The evaluation function is split into cases reflecting the separate
incident dispatch and balancing steps in our solution approach. For
a state s in the tree of agent A;, we design the reward p of taking
an action a in s as

ps—1 — ' (t, (s, a)), if responding to an incident

- l//zﬁkm‘(fr(s,a»’

s,a) =
pls.a) if balancing at s

(1a)
where ps_1 refers to the total accumulated reward at the parent
of state s in the tree, « is the discount factor for future rewards,
and ¢y, the time since the beginning of the planning horizon ty. In a
dispatch step, the reward is updated with the discounted response
time to the incident #,(s, a). In a balancing step, we update the
reward by the average distance traveled by the agents (we denote
the distance traveled by agent A while balancing due to action
ain s by @i (s, a)). ¢ is an exogenous parameter that balances the
trade-off between response time and distance traveled for balancing,
and is set by the user depending on their priorities. Distance is not
included during dispatch actions, as we always send the closest
agent.

We evaluated the proposed MMCTS approach on data from
Nashville, TN. The incident prediction model was trained on 35858
incidents occurring between 1-1-2018 and 1-1-2019, and we eval-
uated the decision processes on 2728 incidents occurring in the
month of January, 2019. The parameters for each experimental run
are described in table 1, and the corresponding results shown in
figures 4a and 4b. We observe that with proper parameter choices,
the response time variance is reduced without incurring large re-
balancing costs (i.e. distance agents move during rebalancing).

5 INTEGRATED PIPELINE AND TOOL

We briefly describe the framework and architecture of our open-
source response tool (Fig. 5). The tool accesses historical incident
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Figure 4: (a) Response time distributions for parameter
search experiments compared to greedy (base) strategy.
(b) Mean miles traveled per agent in each balancing step.

offline | online
Realime inter-agent
h communication
ERM Traffic —} Traffic Router
System Data TS action sets
Confi S —
J MCTS Agent [ [ I
Hyper-parameter }v o | I
Selection g
Incident — Plannin,
Data Data-Driven Tﬁggerg MCTS
Simulation —»  Coordinator { Action |
Setup Filtering
Temporal
WE)ata ' Data Pre- Simulated ﬂucn
feather, - N
Traffic. ete. Processing System Human Operator -
Recommendation
l Evaluation and Final
Static Data Aggregalorl ‘ OQTSJ:C\‘?S"‘ F2EEED
Data - (Clustering) | | Models safe action
Roadway E
Information Real-World
Dispatching
New Incident Reports System

Figure 5: Response Tool Framework

data, temporal data (weather and traffic) and static roadway data.
The data is processed and fed into an aggregator, which identifies
clusters of roadway segments (or any user-specified unit of spatial
discretization) that are similar to each other using a visual analytic
tool. For each such cluster, a set of online forecasting models are
learned and compared automatically with criteria such as test-set
likelihood and AIC (Akaike Information Criteria), and are updated
as new incidents are reported. Our tool currently supports Poisson
regression, negative-binomial regression, parametric survival mod-
eling and zero-inflated Poisson regression. The forecasting model
that best describes the data is used by an MMCTS allocation model
(under development) which recommends allocation and dispatch-
ing actions to human operators. These operators make the final
ERM decisions to avoid moral or legal constraints.

6 CONCLUSION

Although ERM poses one of the biggest challenges to urban areas
across the globe, there are several important gaps between theory
and practice in this field. We have systematically bridged several of
these gaps by creating online models for spatial temporal forecast-
ing and designing fast and tractable solutions to stochastic control
problems that can aid dispatch and allocation of responders. We
are combining the entire set of approaches in an open-source ERM
tool, the first of its kind, that will make it possible for policy makers
to access the state-of-the-art approaches from research related to
emergency management.
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