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ABSTRACT

The problem of ensuring timely response to spatial-temporal incidents like crimes,
accidents, fires and distress calls is of utmost importance to urban communities
across the globe. This problem can actually be broken down into the follow-
ing modular sub-problems - understanding where and when such incidents occur,
how resources should be placed in anticipation of such incidents, and finally, how
should such resources be dispatched as and when needed. While all these prob-
lems have attracted interest from various communities, there are significant prior
gaps in the literature. Further, we argue that any holistic solution to this problem
must look at creating a pipeline where solutions to these subproblems can work
in harmony. In this paper, we look at these problems individually in a system-
atic and principled manner, and then evaluate their functioning as a pipeline. We
also demonstrate how our approach outperforms state-of-the-art approaches using
real-world data from the metropolitan area of Nashville, USA.

1 INTRODUCTION

In the last century, a rather alarming increase in population density across the globe has led to a
number of challenges, out of which crimes and accidents are two issues that plague most of the
urban regions of the world. To tackle such problems, government bodies resort to a variety of
emergency responders including police, medical and fire departments. There are three problems
that are vital to such responders - 1) understanding where and when such incidents happen, and 2)
how can responders be placed to best respond to such incidents, and 3) how can such responders
be deployed in real-time when such incidents occur. Our approach towards tackling the problem of
emergency response consists of two major steps - first, we seek to develop rigorous and principled
approaches to solve each sub-problem independently, and secondly, we aim to create a pipeline
that can merge the solutions to create a holistic and complete framework for ensuring effective
emergency response.

We begin by trying to understand the dynamics of such spatial-temporal incidents. Such forecasting
models have been extensively studied; for example, both qualitative and quantitative approaches
have been studied to forecast crimes as well as traffic accidents (Speer et al., 1998; Kennedy et al.,
2011; Zhang et al., 2015; 2016; Balke et al., 2005; Ackaah & Salifu, 2011). A major shortcoming
of such prior approaches is that they do not allow principled data-driven continuous-time incident
forecasting that can include arbitrary risk factors. Mukhopadhyay et al. (2016) tackle these prob-
lems efficiently, by using parametric survival models (Cox & Oakes, 1984) to predict incidents like
crimes. Parametric survival models are flexible to accommodate an arbitrary set of features, and
can be learned using principled methods; moreover, such a model shows significant improvement
over existing state-of-the-art. However, such an approach has a few shortcomings - first, it treats
all incidents with equal severity or importance, which is detrimental to planning strategies of emer-
gency response. Also, the spatial granularity learning such a model is based on ad-hoc heuristics,
that might not work on all types of incidents or regions. In this paper, we explain how these gaps
can be systematically bridged.

Given a model to forecast incidents, we then move to the problem of dispatching responders when
incidents occur. Solving the problem of optimally dispatching responders is incumbent upon first
placing the responders effectively in anticipation of such incidents. We assume the availability
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of such an approach, and briefly describe one such method in section 4. Given such an initial
distribution of resources, the canonical way of solving the dispatching problem is to model it as
a Semi-Markov Decision Problem (SMDP) (Keneally et al., 2016; Mukhopadhyay et al., 2018).
This formulation is challenging to solve, since the state-transition probabilities of the SMDP are
difficult to calculate in closed-form. Mukhopadhyay et al. (2018) present the more general of the
two approaches, by first converting the SMDP to a discrete-time MDP, and accessing a simulator
to learn the state-transition probabilities. Although such an approach is guaranteed to converge to
the optimal solution, it can not work in dynamic settings, and moreover, the policy takes weeks to
learn. In order to alleviate this problem, we design an efficient approach that is fast and scalable, and
can compute close-to-optimal solutions even in dynamic environments. Finally, we use real-world
data from Nashville, a major metropolitan area of USA, to compare our approach against existing
state-of-the-art, and show that our models significantly outperform them.

2 PROBLEM SETUP

We consider a set of equally sized grids G, that span the entire spatial area under consideration.
Also, we assume the availability of a dataset D of prior incidents, in which incident d; € D denotes
the i incident. Each incident is labeled with its location of occurrence, which is denoted by the gird
in which it happened. Further, each incident d; € D is also characterized by a time of occurrence
7;, a reported severity that is represented by the discrete ordinal random variable k;, and a set of
spatial-temporal features w; € R™. Thus, our dataset is a collection of time-stamped feature vectors
corresponding to crime incidents, { (71, k1, w1), (72, k2, w2), . . ., (Tn, kn, wy ) }. For each grid g; €
G, we denote the time between successive incidents by the random variable ¢, and define ¢; =
T; — T;_1 as the time to arrival of the 7™ incident in the dataset. Our primary goal is to learn a
distribution f (¢, k|w).

Given such a model, we consider a set R of responders, that are spatially distributed in G. To solve
the dispatch problem, we seek to learn a policy 7 that can prescribe an action (which responder to
dispatch) when an incident occurs.

3 INCIDENT FORECASTING

3.1 PREDICTING INCIDENT ARRIVAL

We first present a model that can be used to efficiently learn a marginal distribution over inter-arrival
times (f:(¢|w)), and then tackle the problem of learning the joint distribution. A natural fit for this
problem is survival analysis, which has been used to predict urban crime incidents (Mukhopadhyay
et al., 2016). Survival Analysis comprises of a broad class of methods that model the distribution
of time to an incident arrival. Formally, a survival model is f;(t|y(w)), where f; is a probability
distribution for a continuous random variable 7" representing the inter-arrival time, which typically
depends on covariates w as log(y(w)) = 6y + >, ;w;. In order to model and learn f(t), we chose
the exponential distribution, which has been widely used to model inter-arrival time and has recently
been used to predict urban incidents. Given such a model and a dataset D, the goal of a learner is
to find parameters 6* that maximize the sum of log-likelihood of the inter-arrival times, such that
0* = argmax,ycg >, logf¢(t;|y(w;)), which can be solved by standard gradient-based methods.

This basic machinery of survival modeling can be used to forecast spatial temporal incidents across
an urban area. However, we now seek to understand the granularity at which such a model should
be learned. One obvious way is to learn such a survival model independently for each grid g; € G.
The main concern with this approach is overfitting: each grid induces relatively little data, and
there are surely considerable structural similarities of the incident process across multiple grids that
we can leverage. On the other hand, learning a single “universal” model for all grids may fail to
capture all of the existing heterogeneity not explicitly modeled in the feature space w. We present
a principled way of tackling this problem by using a Hierarchical Clustering approach (Johnson,
1967). Consider the feature set w to be divided into two parts, namely ws and wgy, where wy
represents a set of szatic features, such as population density in a grid, which remain relatively fixed
for an area, while wy denotes dynamic features, such as the amount of rainfall in a day or day of
the week. Our fundamental hypothesis is that the set of static features w, can be used to identify
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similarities between distinct spatial grids. This hypothesis lets us create clusters of similar grids, and
then one survival model can be learned per cluster. To operationalize this hypothesis, we propose a
hierarchical clustering algorithm, that we describe at a high level for the sake of brevity. At the onset,
we treat each grid as a distinct cluster. Iteratively, we merge two grids that are most similar, with
similarity between grid 7 and grid j measured as the squared norm of the associated feature vectors
w’ and wl. At each step, we check whether the updated set of clusters decreases the predicted
likelihood computed on the training data set compared with the previous iteration by more than a
pre-defined limit, and stop as soon as this improvement in likelihood is below a pre-specified limit.

3.2 PREDICTING INCIDENT SEVERITY

One way of capturing incident severity is to learn a different arrival model for each severity type.
However, this approach has shown that sacrificing the scale of the data for achieving heterogeneity
can create noisy estimates (Gorr et al., 2003). In order to tackle this problem, we decompose the joint
distribution f(¢, k|w), and represent it as f(t, k|w) = f(t|w)f(k|t,w). This decomposition helps
us in two ways: first, the parametric survival model described in section 3.1 can directly be used to
learn the density of inter-arrival times, and secondly, the entire dataset can be used to learn a model
over incident severity, without fracturing it by severity category. To learn the severity distribution
conditional on incident time and the feature vector w (f(k|t,w)), we use the multinomial logistic
regression model (Bohning, 1992).

4 DYNAMIC DISPATCH OF RESPONDERS

The efficacy of any approach to dynamically dispatch responders is heavily dependent upon first
placing the available responders in anticipation of such incidents. One such way of allocating re-
sources given a model of incident arrival is to minimize the expected waiting time of the future
incidents. The resulting optimization problem is non-linear and non-convex, but can be solved well
with well-crafted meta-heuristics (Mukhopadhyay et al., 2017). Given an allocation of responders
and a model of incident arrival, the problem of dynamic dispatch of responders can be formulated as
a semi-Markov decision process (SMDP), and then solved by converting the problem to a discrete-
time MDP. This process, however, is extremely slow and fails to work in dynamic environments
since any change in the problem definition (the number of responders, or the position of a depot)
renders the learned policy stale.

In order to tackle this problem, we first highlight an important observation - one need not find an
optimal action for each state as part of the solution approach since at any point in time, only one
decision-making state might arise in a system that evolves in continuous time. This difference is
crucial, as it lets us bypass the need to learn an optimal policy for the entire MDP. Instead, we
focus on a principled approach that evaluates different actions at a given state, and selects one that is
sufficiently close to the optimal action. We do this using sparse sampling, which creates a sub-MDP
around the neighborhood of the given state and then searches that neighborhood for an action. In
order to actualize this, we use Monte-Carlo Tree Search (MCTS). Once an incident happens, possible
actions are considered based on the responders that are available. Then, a tree is gradually built by
simulating each action and the entire area under consideration. We point out that the generative
incident arrival model is particularly vital in this regard, since future incidents can be forecasted
easily by such a model. Finally, the action that maximizes the long-term rewards for the system is
chosen (in order model, shorter response times ensure higher rewards).

5 EXPERIMENTAL FINDINGS

We test our algorithmic approach on real-world data from a major metropolitan area of USA, with
a population of approximately 700,000. We looked at data for 26 months, from 2014 - 2016, com-
prising of a total of 20148 traffic accidents. We divide the data into 3 overlapping datasets for our
experiments. For the incident prediction model, we used prior work (Songchitruksa & Balke, 2006;
Poch & Mannering, 1996; Shankar et al., 1995) and expert opinions to construct the feature set w.
We took into effect weather parameters (rain and snow), temporal cycles (time of day, day of week),
temporal and spatial incident correlation (number of incidents in grids and neighboring grids) and
transportation features (number of roadway and highway intersections in a grid).
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Likelihood Comparison: Standard vs Hierarchical
Survival Analysis

35
30

1 Test Percent False False
v I . Set Accuracy | Negative | Positive
0 Set 1 64.7% 3.4% 31.9%

Testset 1 Test Set 2 TestSet 3 Set 2 65.4% 1.6% 33%
W Standard Survival Analysis W Hierarchical Survival Analysis Set 3 67.4% 1.8% 30.8%

Negative Log Likelihood x10°

Figure 1: Likelihood Comparison (Lower is bet- Table 1: Severity Prediction Accu-

ter) racy
Number of Stations 26 13 6 3
(Fraction of Nashville Count) (full) (172) (1/4) (1/8)
Average Response Time Savings | 38.705 | 2.231 15917 | 34.871
for Incidents Impacted by Policy
(seconds)
Number of Incidents Impacted by | 5 14 99 150
Policy
Average Computation Time per In- | 0.384 0.198 | 0.350 0.0343
cident (seconds)

Table 2: Performance of System Compared to Base Policy

To evaluate the efficacy of our incident prediction model, we compare Hierarchical Survival Anal-
ysis (HSA) with a baseline survival model, that has already shown to outperform state-of-the-art
alternatives (Mukhopadhyay et al., 2016). We present the results in Fig.1, which shows that hier-
archical survival models result in significantly improved likelihood over standard survival models.
We also present the results of our severity prediction approach in Tablel. We find an average ac-
curacy of about 66%, a reasonable performance on a 3-class classification problem. To delve more
deeply, note that in emergency response settings, incorrectly predicting high severity incidents is
more costly than overestimating severity. We can see that the model rarely underestimates severity.

To evaluate the dynamic dispatch approach, we compared our approach with the existing approach
followed by the actual fire department of our metropolitan area, which is in charge of dispatching
ambulances to accidents. This baseline policy involves sending the closest available responder to an
incident. To ensure the approach works under different levels of stress (the ratio of the frequency of
incidents and the number of responders), we varied the number of responders in our experiments.
We summarize the results in Table 2, which shows that at lower levels of stress, the MCTS approach
and the baseline policy agree in most of the cases, but as the system is stressed, the MCTS approach
impacts a significant number of incidents and saves vital response time. We highlight that this is a
significant improvement, since the incidents served often involve life-and-death scenarios.

6 DEPLOYMENT

In order for our work on emergency response to have meaningful impact, we created a tool (to be
made open-source soon) for the fire and police departments of Nashville. The tool has already been
deployed at the fire department, and we are working with the police department to deploy it.

7 CONCLUSION

In this paper, we summarized our work towards creating a systematic approach to ensure timely re-
sponse to traffic accidents. We proposed learning a joint probability distribution over incident arrival
and severity of incidents to tackle incident predictions heterogeneously based on priorities. Further,
we proposed a novel hierarchical clustering approach to learn the spatial granularity at which such
forecasting models should be learned. Finally, we formulated an MCTS based approach to tackle the
dynamic dispatch of responders, that can use the incident prediction model to compute dispatch de-
cisions quickly. Our experimental results demonstrate that our approaches offer significantly better
performance than existing state-of-the-art approaches and policies followed in practice.
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