
On Algorithmic Decision Procedures in Emergency Response
Systems in Smart and Connected Communities

Geoffrey Pettet
Vanderbilt University

Nashville, TN
geoffrey.a.pettet@vanderbilt.edu

Ayan Mukhopadhyay
Stanford University

Palo Alto, CA
ayanmukh@stanford.edu

Mykel Kochenderfer
Stanford University

Palo Alto, CA
mykel@stanford.edu

Yevgeniy Vorobeychik
Washington University

St Louis, MO
yvorobeychik@wustl.edu

Abhishek Dubey
Vanderbilt University

Nashville, TN
abhishek.dubey@vanderbilt.edu

ABSTRACT
Emergency ResponseManagement (ERM) is a critical problem faced
by communities across the globe. Despite its importance, it is com-
mon for ERM systems to follow myopic and straight-forward deci-
sion policies in the real world. Principled approaches to aid decision-
making under uncertainty have been explored in this context but
have failed to be accepted into real systems. We identify a key issue
impeding their adoption — algorithmic approaches to emergency
response focus on reactive, post-incident dispatching actions, i.e.
optimally dispatching a responder after incidents occur. However,
the critical nature of emergency response dictates that when an
incident occurs, first responders always dispatch the closest avail-
able responder to the incident. We argue that the crucial period
of planning for ERM systems is not post-incident, but between
incidents. However, this is not a trivial planning problem — a major
challenge with dynamically balancing the spatial distribution of re-
sponders is the complexity of the problem. An orthogonal problem
in ERM systems is to plan under limited communication, which
is particularly important in disaster scenarios that affect commu-
nication networks. We address both the problems by proposing
two partially decentralized multi-agent planning algorithms that
utilize heuristics and the structure of the dispatch problem. We eval-
uate our proposed approach using real-world data, and find that in
several contexts, dynamic re-balancing the spatial distribution of
emergency responders reduces both the average response time as
well as its variance.

KEYWORDS
Emergency Response Management, Monte Carlo Tree Search, De-
centralized Algorithms, Smart and Connected Communities

1 INTRODUCTION
Emergency response management (ERM) is a critical problem faced
by communities across the globe. First responders need to respond
to a large number of incidents dispersed across space and time with

Proc. of the 19th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2020), B. An, N. Yorke-Smith, A. El Fallah Seghrouchni, G. Sukthankar (eds.),
May 2020, Auckland, New Zealand
© 2020 International Foundation for Autonomous Agents and Multiagent Systems
(www.ifaamas.org). All rights reserved.
https://doi.org/doi

limited resources. The overall problem of emergency response actu-
ally consists of more than just dispatching responders to the scene
of incidents. It can be decomposed into the following sub-problems
— forecasting, planning, and dispatching. Although these problems
have largely been looked at independently, the efficacy of dispatch
decisions are largely dependent on accurately forecasting the fu-
ture spatial-temporal distribution of incidents, as well as careful
planning to place responders in anticipation of future incidents.
Therefore, it is imperative that principled approaches be designed
to tackle all the three sub-problems of an ERM pipeline. However,
it is fairly common for ERM systems to follow myopic and straight-
forward decision policies. For decades, the most common approach
to respond to an incident was to dispatch the closest available re-
sponder (in time or space), after which the responder would return
to its base or get assigned to another incident. Such methods do
not necessarily minimize expected response times [15]. As cities
grow, population density, traffic dynamics and the sheer frequency
of incidents make such methods stale and inaccurate. We systemat-
ically investigate the nuances of algorithmic approaches to ERM
and describe how principled decision-making can aid emergency
response.

Theoretically, an ERM system is a classical example of a human-
in-the-loop cyber physical system (H-CPS). Once an incident occurs,
a computer-aided dispatch system (CAD)[22] aids humans in de-
ciding which responder to dispatch to the scene of the incident.
Naturally, algorithmic approaches to emergency response typically
combine a data-driven forecasting model to predict incidents, which
is coupled with a decision-making process that provides dispatch
recommendations. Canonical approaches towards modeling the
decision process involve using a continuous-time Markov decision
process (CT-MDP)[11] or a semi-Markovian process (SMDP)[16],
which are solved through dynamic programming. While the SMDP
model provides a more accurate representation of ERM dynamics,
it does not scale well and cannot be used in dynamic environments
like urban areas[13]. The trade-off between optimality and compu-
tation speed has also been investigated by the use of Monte-Carlo
based methods[13].

Despite such algorithmic progress and attention in recent years
from the AI community[4, 13, 16, 18, 19, 23], there are still issues
that impede the adoption of these principled algorithmic approaches
by emergency responders. We argue that a major problem lies in the
very focus of most algorithmic approaches. Most ERM systems seek

ar
X

iv
:2

00
1.

07
36

2v
1

 [
cs

.A
I]

 2
1

Ja
n

20
20

https://doi.org/doi

to perform intelligent decision-making after incidents occurs. While
such approaches guarantee optimality in the long run (with respect
to response times), they de-prioritize response to some incidents.
Our conversations with first-responders[21] revealed two crucial
insights about this problem: 1) it is almost impossible to gauge the
severity of an incident from a call for assistance and de-prioritize
immediate response in anticipation of higher future rewards, and
2) CAD systems typically enable a human agent to dispatch a re-
sponder in the span of 5-10 seconds (this includes latency on the
human agent’s part as well). These insights also explain why the
closest responder is usually dispatched to an incident; it is too risky
to de-prioritize incidents or afford computational latency once an
incident has occurred. In fact, it has been noted in previous work[6]
that while it is challenging to track the closest free responder in real-
time, the “most important improvement (to emergency response)
would be the implementation of a policy to send the closest am-
bulance”. This is counter-intuitive; principled decision-making in
emergency response has revealed that a greedy myopic strategy of
sending the nearest responder is sub-optimal[13]. This presents us
with an interesting conundrum that we seek to address.

We begin by raising an important conceptual question about
algorithmic approaches to emergency response - is it actually fea-
sible to optimize over the dispatch decision once an incident has
happened? In this paper, we argue that in order to implement intel-
ligent decision-making in practical ERM systems, the crucial period
of planning and principled decision-making is not post-incident,
but actually between incidents. This avoids the possibly devastating
consequences of explicitly choosing to de-prioritize response to
an incident to achieve future gain, but accommodates the scope
of principled decision-making. Most ERM systems do not exploit
the scope of dynamically rebalancing the spatial distribution of
responders according to the need of the hour. This problem is ac-
tually challenging, since optimizing over responder distribution
and response as a multi-objective optimization problem is usu-
ally computationally infeasible. Indeed, even Monte-Carlo based
methods have previously been used with a restricted action space
(only responding to incidents) to achieve acceptable computational
latency[13]. We address this challenge by proposing two efficient
algorithmic approaches to optimize over the spatial distribution of
responders dynamically.

The second set of problems that impedes the adoption of algorith-
mic decision-making in ERM is related to resilience and efficiency
that most smart and connected communities strive to achieve. Data
processing and decision-making for algorithmic dispatching usually
occurs in a centralizedmanner (typically at a central data processing
center), which is then communicated to responders. The problem
of emergency response however, clearly evolves in a multi-agent
setting, in which the agents have the computational capacity to
perform independent computation (most modern-day ambulances
are equipped with laptops; in our region of interest, this is actually
true for all ambulances). In an extremely time-critical setting, espe-
cially in cases where communication bandwidth is limited due to
disasters, it is crucial that such computing abilities are used, and
distributed and parallelized algorithmic frameworks are designed.
Also, centralized decision-making systems treat all agents as part
of a monolithic object or state, and computation is focused on the
entire state object. This is redundant, since often times, agents can

operate independently (for example, an ambulance in one part of
the city is usually not affected by an incident in a completely dif-
ferent or distant part). In this paper, we argue that decentralized
planning could identify and utilize structure in the problem and
save vital computational time.

Contributions: We focus on two major problems in this paper
— 1) designing an approach that can accommodate rebalancing of
resources to ensure efficient response, and 2) designing the ability
for an emergency response system to be equipped to deal with
scenarios that require decentralized planning with very limited
communication. To this end, we start by modeling the problem of
optimal response as a Multi-Agent Semi-Markov Decision Process
(M-SMDP)[2, 9]. Then, we describe a novel algorithmic approach
based on Multi-Agent Monte-Carlo Tree Search (M-MCTS)[3] that
facilitates parallelized planning to dynamically rebalance the spatial
distribution of responders. Our approach utilizes the computation
capacity of each individual agent to create a partially decentralized
approach to planning. Finally, we evaluate our framework using
real-world data from a major metropolitan area of USA.

2 SYSTEM MODEL
Our goal is to develop an approach for emergency responder place-
ment and incident response in a dynamic, continuous-time and
stochastic environment. We begin with several assumptions on
the problem structure and information provided a-priori. First, we
assume that we are given a spatial map broken up into a finite
collection of equally-sized grid cells G, and that we are given an
exogenous spatio-temporal model of incident arrival in continuous
time over this collection of cells (we describe one such model later).
Second, we assume that for each spatial cell, the temporal distri-
bution of incidents is homogeneous. This assumption is merely a
reflection of the granularity of the spatial discretization: we can, in
principle, always discretize space finely enough so that this assump-
tion approximately holds. Our third assumption is that emergency
responders are allowed to be housed in a set of fixed and exoge-
nously specified collection of depots D, where dk represents the
kth depot. Depots are essentially a subset of cells that responders
can wait in, and are analogous to fire-stations in the real-world.
Each depot dk has a fixed capacity C(k) of responders it can house
at a time. We assume that when an incident happens, a free re-
sponder (if available) is dispatched to the site of the incident. Once
dispatched, the time to service consists of two parts: 1) time taken
to travel to the scene of the incident, and 2) time taken to attend to
the incident. If no free responders are available, then the incident
enters a waiting queue.

2.1 Incident Arrival
Arguably, the most important component of a decision-theoretic
framework to aid emergency response is the understanding of when
and where incidents occur. While our algorithmic framework is flex-
ible to work with any forecasting model, we briefly describe the
one that we choose to use. We focus on continuous-time forecast-
ing based on survival analysis, that has recently shown state-of-
the-art performance in prediction performance for a variety of
spatial-temporal incidents (crimes, traffic accidents etc.)[15, 17, 18].

2

Formally, the model represents a probability distribution over inter-
arrival times between incidents, conditional on a set of features,
and can be represented as

ft (T = t |γ (w))
where ft is a probability distribution for a continuous random

variable T representing the inter-arrival time, which typically de-
pends on covariatesw via the functionγ . The model parameters can
be estimated by the principled procedure of Maximum Likelihood
Estimation (MLE) [10].

2.2 Decision-Making Process
The evolution of incident arrival and emergency response occur
in continuous-time, and can be cohesively represented as a Semi-
Markov Decision Process (SMDP) [16]. Formally, a SMDP system
can be described by the tuple {S,A, P ,T , ρ(i,a),α } where S is a
finite state space, A is the set of actions, P is the state transition
function with pi j (a) being the probability with which the process
transitions from state i to state j when action a is taken, T de-
notes the temporal transition with t(i, j,a) representing a distri-
bution over the time spent during the transition from state i to
state j under action a, and ρ represents the reward function. We
stick to this definition for the most part; however, such a model
focuses on a single monolithic state object that accounts for all the
agents. Our focus is on distributed multi-agent decision making, so
we model the evolution of incidents and responders together in a
Multi-Agent SMDP (MSMDP)[20], which can be represented as the
tuple {Λ, S,A, P ,T , ρ(i,a),α ,T }, where Λ is a finite collection ofm
agents and λj ∈ Λ denotes the jth agent. The action space of the jth
agent is represented by Aj , and A =∏m

i=1Aj represents the joint
action space. We assume that the agents are cooperative and work
to maximize the overall utility of the system. The components S ,R,ρ
and P are defined as in a standard SMDP. T represents a termina-
tion scheme; note that since agents each take different actions that
could take different times to complete, they may not all terminate
at the same time. An overview of such schemes can be found in
prior literature [20]. We focus on asynchronous termination, where
actions for a particular agent are chosen as and when the agent
completes it’s last assigned action. Next, we define the important
components of the decision process in details.

States: A state at time t is represented by st which consists of a
tuple {I t ,Rt }, where I t is a collection of cell indices that are waiting
to be serviced, ordered according to the relative times of incident
occurrence. Rt corresponds to information about the set of agents
at time t with |Rt | = |Λ|. Each entry r tj ∈ Rt is a set {ptj ,д

t
j , c

t
j },

where ptj is the position of responder λj , дtj is the destination cell
that it is traveling to (which can be its current position), and ctj is
used to encode its current condition (busy or available), all observed
at the state of our world at time t. For the sake of convenience, we
abuse notation slightly and refer to an arbitrary state simply by s
and use the notation si and sj to refer to multiple states. We point
out that our model revolves around states with specific events that
provide the scope of decision-making. Specifically, decisions need
to be taken when incidents occur, when responders finish servicing
and while rebalancing the distribution of responders. We also make
the assumption that no two events can occur simultaneously in our

world. In case such a scenario arises, since the world evolves in
continuous time, we can add an infinitesimally small time interval
to segregate the two events and create two separate states.

Actions: Actions in our world correspond to directing the re-
sponders to a valid cell to either respond to an incident or wait.
Valid locations include cells with pending incidents or any depot
that has capacity to accommodate additional responders. The valid
actions for a specific state si are denoted by V (si) (some actions
are naturally invalid, for example, if an agent is at cell k in the
current state, any action not originating from cell k is unavailable
to the agent). Actions can be broadly divided into two categories -
responding and rebalancing. Responding actions refer to an agent
actually going to the scene of an incident to service it. But agents
could also be directed to wait at certain depots based on the likeli-
hood of future incidents in the proximity of the said depot. We refer
to such actions as rebalancing. Finally, we reiterate that the joint
valid action space of all the agents and a particular instantiation of
it are defined by A and a respectively, and that of a specific agent
λj by Aj and aj .

Transitions: Having described the evolution of our world, we
now look at both the transition time between events, as well as the
probability of observing a state, given the last state and action taken.
We define the former first, denoting the time between two states si
and sj by the random variable ti j . There are two random variables
of interest in this context. We denote the time between incidents by
the random variable ta , the time to service an incident by ts , and
the time to a balance step as tb . Specifically, we model ta using a
survival model described in section 2.1. We model the service times
(ts) by learning a exponential distribution from service times using
historical emergency response data, and we model rebalancing time
(tb) simply by the time taken by an agent to move to the directed
cell.

We refrain from focussing on the transition function P , as our
algorithmic framework only needs a generative model of the world,
and not explicit estimates of state transition probabilities.

Rewards: Rewards in SMDP usually have two components: a
lump sum instantaneous reward for taking actions, and a continu-
ous time reward as the process evolves. Our system only involves
the former, which we denote by ρ(s,a), for taking action a in state
s . We define the reward as r = −ts , where ts is the response time
to an incident.

2.3 Problem Definition
Given state s and a set Λ ofm agents, the problem is to determine
an action recommendation set σ = {a1, ...,am }, s .t . ai ∈ Ai (s),
that maximizes the expected reward. The ith entry in σ contains
a valid action for the ith agent. Here state s = {I t ,Rt }, where I t
corresponds to a collection of cells with incidents waiting to be
serviced, and Rt contains relevant information about each agent
λj ∈ Λ,∀ j ∈ {1, ...,m}.

We point out that solving this problem directly is hard due to its
intractable state space. Further, the state transition functions are
unknown and difficult to model in closed form, which is typical
of urban scenarios where incidents and responders are modeled
cohesively [16]. Finally, we have to consider the following practical
constraints and limitations.

3

• Temporal constraints - emergency response systems can
afford minimum latency (5-10 seconds in practice).

• Capacity constraints - Depots have a fixed capacity to ac-
commodate agents.

• Uniform severity constraint - All incidentsmust be responded
to ‘promptly’, without making a judgement about its severity
based on a report or a call.

• Wear and Tear - Emergency vehicles must be maintained
and the overall distance they travel should be controlled to
limit the wear and tear.

• Limited Communication - ERM systems must be equipped
to deal with disaster situations, where communication is
limited.

The temporal and uniform severity constraints make it difficult to
justify implementing dispatch policies other than greedy — in order
to improve upon greedy dispatch, some ‘good’ myopic rewards
must be sacrificed for an increase in expected future rewards. Since
it is very hard to predict the severity of an incident pre-dispatch,
the decision process cannot determine if this sacrifice is acceptable.
Therefore, in this work we focus on inter-incident planning while
maintaining greedy dispatch decisions when an incident is reported.
Such an approach also gives the decision-maker more flexibility,
as it can proactively position resources rather than reacting to
incidents. Our problem then becomes how to distribute responders
between incidents such that the greedy dispatching rewards are
maximized.

3 EMERGENCY RESPONSE WITH
REBALANCING

3.1 Problem Complexity
The increase in flexibility due to dynamic rebalancing comeswith an
increase in complexity. Consider an example city with r responders
and d locations where responders could be stationed (called depots)
that each can hold one responder. When making a dispatch decision
at the time of an incident, a decision maker has at most only r
possible choices: which responder to dispatch. If instead a decision
maker is attempting to assign the responders to depots, the problem
presents a significantly larger number of choices. For example, with
r = 20 and d = 30, there are 20 dispatching choices per incident,
but P(d, r) = d !

(d−r)! =
30!
10! = 7.31 × 1025 possible assignments.

Approaching the problem from this perspective requires solu-
tions that can cope with this large complexity. One possible ap-
proach is to directly solve the SMDP model. Although the state
transition probabilities are unknown, one can estimate the tran-
sition function by embedding learning into policy iteration[16].
However, such an approach is too slow even for the dispatch prob-
lem; it is therefore, clearly unsuitable for the rebalancing problem. A
different idea is to use a centralized MCTS approach (this might be
useful in situations where decentralized algorithms are not a prior-
ity). However, such an approach suffers from the same shortcoming.
Indeed, a centralized approach barely satisfies the computational
latency constraints in case of the dispatch problem[14]. Instead, we
seek to exploit meaningful heuristics to propose a computationally
feasible rebalancing strategies. We begin by presenting our first

approach, that focuses on using historical frequencies of incident
occurrence across cells to assign responders.

3.2 Multi-Server Queue Based Rebalancing
One way to address the complexity of rebalancing is by considering
an informed heuristic. A natural heuristic for ERM rebalancing
are incident rates — each depot can be assigned responders based
on the total rate of incidents it serves. Ultimately, our goal is to
find a rebalancing strategy that minimizes expected response times.
As a result, we first try to estimate the response time given a spe-
cific assignment of repsonders. Such a scenario can be modeled
as a multi-server M/M/c queue [8]. For a given cell and depot, the
response time for an M/M/c queue can be represented as

responseTime(c,υ, µ) = C(c,υ/µ)
cµ − υ +

1
µ

where C(c,υ/µ) = 1

1 + (1 − υ
cµ)(

c !
(cp)c)

∑c−1
k=0

(cp)k
k !

(1)

where µ is the mean service time of responders, c is the number
of responders stationed at the depot, and υ denotes the rate of
incident occurrence at the concerned cell. The problem of emer-
gency response is not as straight-forward — incidents at a cell д
can potentially be serviced by any depot, which are located at dif-
ferent distances from д. To address this, we consider a multi-class
queue formulation in which multiple cells are served by each depot
and vice-versa. Since multiple depots share the responsibility of
responding to each cell, we need to split the request rate from a cell
among the different depots. Instead of depots uniformly sharing
this responsibility, we account for the fact that depots closer to a
cell д are more likely to service incidents in it than other depots
which are farther away. Thus, for each cell, we split its incident
arrival rate among depots in a way such that the fraction of split
incurred by a depot is inversely proportional to the distance to the
concerned cell.

The following system of linear equations can be used to split the
arrival rate of a cell д among depots D.∑

d ∈D
υdд = υд (2a)

dist(d1,д)υd1д = dist(d2,д)υd2д ∀d,d2 ∈ D (2b)

where υdд is the fraction of arrival rate of cell д that is shared
by depot d and dist(d,д) denotes the distance between depot d and
cell д. Equation 2a ensures that the split rates for each cell д ∈ G
sum to its actual arrival rate υд , and equation 2b ensures that the
weighted λ’s are inversely proportional to the relative distances
between the depots and the cell. For convenience, we refer to the
entire set of split rates by ϒ.

While we have a way of evaluating the load on each depot based
on the frequency of incidents it is likely respond to, this does not
provide us with a way of rebalancing responders. This is due to
two reasons. First, we might not have enough responders to meet
the total demand based on ϒ. Secondly, responders are not homo-
geneous; based on their current positions, responders might take
different times to travel to assigned depots, thereby increasing the

4

Algorithm 1: Iterative Greedy Action Selection
1 INPUT: number of agents |Λ |, depots D , cell rates υд∀д ∈ G ;
2 chosenDepots = ∅;
3 do
4 for d ∈ D do
5 tempDepots = chosenDepots + d ;
6 find υdд ∀д ∈ G, d ∈ D by solving system of linear equations {2a, 2b}

given tempDepots;
7 πd =

∑
d∈D

∑
д∈G responseTime(c, υdд , µ) + travelTime(d, д);

8 bestDepot = argmin πd ∀d ∈ D ;
9 chosenDepots = chosenDepots + bestDepot;

10 while |chosenDepots | < |Λ |;
11 return chosenDepots;

time taken for rebalancing. Thus, the decision-maker needs to ex-
plore various combinations of responder allocations to depots based
on ϒ in order to find the optimal assignment. To this end, we first
design a scoring mechanism for evaluating a specific allocation
of responders to depots for a given ϒ. We denote this score by π .
Using ϒ, a responder allocation can be scored by summing each
depot d expected response time based on the queuing model (calcu-
lated using equation 1) and the overall time taken by responders to
complete the rebalancing:

π =
∑
d ∈D

∑
д∈G

responseTime(c,υdд , µ) + travelTime(d,д) (3)

where the functions responseTime and travelTime are used to denote
the expected response time of a depot under ϒ and travel times
needed by agents to enact rebalancing respectively. The goal of
an assignment method is then to find a responder allocation that
minimizes this heuristic score, since it is based on response time. To
minimize the total score we employ an iterative greedy approach,
shown in algorithm 1. Once the best depots are found, responders
are assigned to them based on their current distance from the
depots.

The approach dramatically decreases the computational complex-
ity of rebalancing compared to a brute force search. The complexity
for solving the system of linear equations 2a is O(r3), as there are
at most r depots that could have a resource allocated. The rates
are split for each cell д ∈ G and new depot under consideration d
during each iteration of the greedy search in algorithm 1, which
is repeated r times to place each responder. This gives the overall
algorithm a complexity of O(|G | |D |r4). Taking the same example
given above with r = 20 and |D | = 30 and assuming |G | = 900
(based on our geographic area of interest and patrol areas chosen by
local emergency responders), the complexity evaluates to 1 × 1016
times less compared to a brute force search.

While this approach is not inherently decentralized, each agent
can perform the same set of computation as a central server, and
take actions themselves, requiring minimal coordination. While
straightforward and tractable, there are a few potential downsides
to this approach. First, this policy does not take into account the
internal state of the system. For example, a responder might be on
its way to respond to an incident, thereby rendering it unavailable
for rebalancing for the next hour (say). Secondly, it assumes that

historical rates of incident arrival can be used to optimize respon-
der placement for the future, thereby not considering how future
states of the system affect a particular rebalancing configuration.
To address these issues, we propose a decentralized Monte-Carlo
Tree Search algorithm.

3.3 Decentralized Monte Carlo Tree Search
Based Approach

Monte-Carlo Tree Search (MCTS) is a simulation-based search al-
gorithm in decision processes, that has been widely used in game
playing scenarios. MCTS based algorithms sample a very large num-
ber of possible scenarios, and use them to evaluate a set of actions.
The evaluations are done in the form of a search tree, and essential
statistics are stored, which are then used to explore promising ac-
tions. Typically, this choice is made through a principled approach
like UCT[12]. A standard MCTS-based approach is not suitable
for our problem though, due to the sheer size of the state-space
in consideration coupled with the low latency that ERM systems
can afford. Instead, we focus on a decentralized multi-agent MCTS
(MMCTS) approach explored by Claes et. al [3] for the multi-robot
task allocation problem for warehouse commissioning. In MMCTS,
rather than building one large search tree that explores all the pos-
sible composite actions that the system can take, individual agents
build their own trees while focusing on the subset of the action
space that is relevant to them. Specifically, each agent has a model
for what other agents are likely to do; this restricts the exploration
for each agent to its own action space and drastically reduces the
state space that needs to be explored. In our case, at each evaluation
step of a Monte-Carlo based approach, using a decentralized multi-
agent search reduces the total number of choices from the number
of permutations P(d, r) = d !

(d−r)! to only the number of depots d .
To realize MMCTS for an ERM domain, some extensions need to

bemade to standard UCT [7].While an agent is building its own tree,
it cannot simply ignore the other agents’ existence and decisions.
Therefore, it is imperative for an agent to have a model for other
agents’ actions. An additional constraint is that this estimation is
required at every step of every simulation by each agent. Hence,
finding a model that strikes a balance between computation time
and accuracy of other agents’ predicted decisions is vital.

There are also global constraints on the system that prohibit
certain combinations of actions. For example, the number of re-
sources assigned to a depot cannot be higher than its capacity. Such
constraints mandate that the agents maintain (at least) a minimal
degree of coordination among each other. We take this into account
by adding a filtering step to the decision process. Similar to Map-
Reduce [5], each agent evaluates possible actions for itself, sends
their chosen optimal action to a central planner which makes the
final decisions while satisfying global system constraints.

Next, we describe the architecture of our decentralized MMCTS
based algorithm.

3.3.1 Reward Structure. - At the core of a MCTS approach is
an evaluation function that can measure the reward of taking an
action at a given state. For a state s in the tree of agent λj , we design
the reward r of an taking action a in s as

5

ras =


rs−1 − α ts (tas), if responding to an incident

rs−1 − α tsψ
∑
λk ∈Λ(dka)
|Λ | , if balancing at s

(4a)

where s − 1 refers to the parent of state s in the tree, α is the
discount factor for future rewards, and ts the time since the begin-
ning of the planning horizon t0. The evaluation function is split
into cases reflecting the separate incident dispatch and balancing
steps in our solution approach. In a dispatch step, the reward is
updated with the discounted response time to the incident tas . In
a balancing step, we update the reward by the average distance
traveled by the agents (we denote the distance traveled by agent
λk while balancing due to action a in s by dak). ψ is a exogenous
parameter that balances the trade-off between response time and
distance traveled for balancing. Distance is not included during
dispatch actions, as we always send the closest agent.

3.3.2 Evaluating other agents’ actions. Agents must have an
accurate yet computationally cheapmodel of other agents’ behavior;
we explore two such possible policies. (1) a naive policy that other
agents will not rebalance, remaining at their current depot (referred
to as Static Agent Policy). (2) an informed policy, which is in the
form of the Queue Rebalancing Policy described in the section 3.2.

3.3.3 Rollout. Whenworking outside theMMCTS tree, i.e. rolling
out a state, a fast heuristic is used to estimate the score of a given ac-
tion. We simply use greedy resource dispatching without balancing
as our heuristic.

3.3.4 Action Filtering. The dispatching domain has several global
constraints to adhere to, including ensuring that an incident is ser-
viced if agents are available and that depots are not filled over
capacity. To ensure these constraints are met, we propose a filtering
step be added to the MMCTS workflow, similar to Map-Reduce.
Once each individual agent has scored and ranked each possible
action, these ranked action lists are sent to a centralized filter that
chooses the final actions for each agent to maximize their utility
while ensuring that all constraints are met.

Another way these constraints affect the workflow is that the
actions available to an agent depend on what actions other agents
take. For example, consider two agents λ1 and λ2; if agent λ1 moves
to a station and fills it to capacity, than agent λ2 cannot move to that
station. In other words, the set of valid actions for an agent when
they build their search tree may not be the same as the valid actions
when it comes time for them to make a decision. To address this, we
have agents evaluate every action they could possibly take when
expanding nodes in the tree, even if those actions would cause an
invalid state. As the filter assigns actions to other agents, some of
these actions can become valid, and the filter checks to ensure that
no invalid actions are taken.

4 EXPERIMENTAL SETUP
To realize an online ERM decision support system requires a frame-
work of interconnected processes. Our experimentation framework
is built on prior work on modular emergency response decision

Algorithm 2: Decision Process
1 INPUT: s, tl im ;
2 I = Sample Incidents(s)
3 E = I + rebalancing events
4 for Agent λj ∈ Λ do
5 λj ’s ranked actions = MMCTS(s, λj , E , tl im);

6 compute final actions with Filter(ranked actions for each λj);
7 update(s, final actions)
8 Return s;

Algorithm 3:MMCTS
1 INPUT: state s, agent λj , sampled events E , time limit tl im ;
2 create root of search tree at s;
3 do
4 select most promising node n from tree using UCB1;
5 childNode = Expand(n, state(n), next event e ∈ E after state(n));
6 rc = Rollout(childNode);
7 Back-propagate(child, rc)
8 while within time limit tl im ;
9 return actions λj could take ranked by average reward

Algorithm 4: Expand
1 INPUT: Search Tree Node n, agent λj , next important event e ;
2 if e is balancing step then
3 select un-explored action a ∈ Aj ;
4 λj takes action a;
5 actions available to other agents are updated

ActionSelection(Λ\{unavailable agents}, state(n));
6 else if e is an incident then
7 dispatch nearest agent to incident
8 create new child node nc from selected actions;
9 update the child’s reward based on the response times (if any) and agent

balancing movement
10 update nc to the time of the next event e , fast forwarding the state;
11 return nc ;

Algorithm 5: Centralized Action Filter
1 INPUT: available agents Λavail , state s, ranked rewards ;
2 do
3 for Agent λj ∈ Λavail do
4 find the valid action a ∈ Aj with highest reward πa ;

5 find the agent λj with the highest scored action aj ;
6 λj takes action aj ;
7 update the actions available to other agents accordingly;
8 remove λj from Λavail ;
9 while there are unassigned agents;

pipeline[13], shown in figure 1a. It includes the following compo-
nents:

• A traffic routing model to model the roadway network to
support routing requests by the decision process.

• A model of the environment and how it changes over time,
which is used by the incident prediction model.

• A model using past incident and environmental features to
model the spatio-temporal distribution of incidents.

• A decision process that makes dispatching recommendations
based on the current state of the environment, locations of
responders, and likely future incident distributions.

6

(a) (b)

Figure 1: a) ERM Framework Overview. b) Decentralized Extended
ERM Framework Overview

Figure 2:Heatmaps depicting comparison of forecasting model (left)
with actual incidents (right).

This framework is a natural choice as it decouples the decision pro-
cess (our focus in this work) from the other components. As it was
designed for the centralized, post-incident dispatching approach,
we make the necessary changes to adapt it to our needs. The under-
lying discrete event simulation was generalized to accept events
other than incident occurrence, such as periodic balancing events.
The decision process was also extended to handle distributed, multi-
agent approaches. An overview of the extended framework can be
seen in figure 1b.

In our experiments we use a euclidean distance based router,
and the incident prediction model outlined in section 2. Due to
the framework’s modularity, these components can be replaced
without affecting the decision process.

Incident Prediction Model: While the broader approach of
rebalancing the spatial distribution of responders is flexible to work
with any modular incident forecasting model, we provide a brief
evaluation of forecasting using survival analysis. To this end, we
generate forecasts 4 hours into the future at intervals of every half
an hour for the entire test set, and then repeat the procedure 5 times
to reduce variance in our forecasts. Finally, we create a heatmap
to visualize the performance of the model in comparison to actual
incidents (see figure 2). We see that forecasting model is fairly
accurate, and models the high and low density areas correctly, as
well as the spatial spread of the incidents.

4.1 Experimental Design
Data: We perform our evaluation on data from Nashville, a major
metropolitan area of USA, with a population of approximately
700,000. The depot locations are based on actual ambulance stations
obtained from the city. Traffic accident data was obtained from the
Department of Transportation of the concerned state, and includes
the location and time of each incident. The incident prediction

Identifier Description Hyper-Parameter Choices
BASE Greedy Baseline Without Rebalancing N/A
Q-1 Queue Based Rebalancing Policy with RoI of 1 RoI = 1
Q-2 Queue Based Rebalancing Policy with RoI of 2 RoI = 2
Q-3 Queue Based Rebalancing Policy with RoI of 3 RoI = 3
Q-4 Queue Based Rebalancing Policy with RoI of 4 RoI = 4
Q-5 Queue Based Rebalancing Policy with RoI of 5 RoI = 5

MR-1 MMCTS - using an oracle for future incidents
and a Static Agent Policy Same as MMCTS Baseline M-1

MR-2 MMCTS - using an oracle for future incidents
and a Queue Rebalancing Policy Same as MMCTS Baseline M-1

M-1

MMCTS - Baseline
The foundation for the parameter search.
Each parameter varies independently while
other parameters retain these values.
(All M-* experiments use generated incident
chains and a Static Agent Policy)

MCTS Iteration Limit = 250
Lookahead Horizon = 120 min
Reward Distance Weightψ = 10
Reward Discount Factor = 0.99995
Rebalance Period = 60 min

M-2 MMCTS - Iteration Limit of 100 MCTS Iteration Limit = 100*
M-3 MMCTS - Iteration Limit of 500 MCTS Iteration Limit = 500*
M-4 MMCTS - Reward Distance Weightψ of 0 Reward Distance Weightψ = 0*
M-5 MMCTS - Reward Distance Weightψ of 100 Reward Distance Weightψ = 100*

M-6 MMCTS - Rebalance Period of 30 minutes;
Lookahead Horizon of 30 minutes

Lookahead Horizon = 30 min
Rebalance Period = 30min*

Table 1: Outline of the experimental runs performed and their cor-
responding hyper-parameter choices. (*Other parameters set to val-
ues of experiment M-1)

model was trained on 35858 incidents occurring between 1-1-2018
and 1-1-2019, and we evaluated the decision processes on 2728
incidents occurring in the month of January, 2019.

Experimental Configuration and Assumptions: We limit
the capacity of each depot to 1 in our experiments. This is motivated
by two factors — first, it encourages responders to be geographically
spread out to respond quickly to incidents occurring in any region
of the city, and it models the usage of ad-hoc stations by responders,
which are often temporary parking spots. While the responder ser-
vice times to incidents are assumed to be exponential in the real
world, we set them to a constant for these experiments. This en-
sures that the experiments across different methods and parameters
are directly comparable. If deployed, however, proper service time
distributions should be learned and sampled from for each ERM
system. We set the total number of responders to 26, which is the
actual number of responders in the concerned metropolitan area.
We split the geographic area into 900, 1x1 mile square cells. This
choice was a consequence of the fact that a similar granularity of
discretization is followed by local law-enforcement authorities to
deploy patrols. In our experiments, each agent evaluates 5 sampled
incident chains from the generative model and averages the scores
for each action across the playouts. This smooths out noise in the
model. The standard UCB1 [1] algorithm is used to select the most
promising node during MCTS iterations. Finally, we augment the
queue based rebalancing policy by adding a region of interest (RoI)
for each cell. Only depots within a cell’s RoI are considered when
splitting its rate. This encourages agents to more evenly distribute,
and reduces computation time.

5 RESULTS AND DISCUSSION
5.1 Queue Based Rebalancing Policy:
We first compare the queue based rebalancing policy described
in section 3.2 to the incumbent, baseline policy of no rebalancing.
In these experiments rebalancing occurred every half hour, and
the incident rates υ were average historical rates from the training

7

(a) (b)

Figure 3: a) The response time distributions for each queue rebalanc-
ing policy experiment. b) Distribution of average miles traveled by
each responder at each balancing step in the queue rebalancing pol-
icy experiments. The baseline approach has no rebalancing, so it is
excluded

(a) (b)

Figure 4: a) The response time distributions for each MMCTS exper-
iment using an oracle. b) Distributions of average miles traveled by
each responder at each balancing step of the MMCTS experiments
using an oracle

incident data. We tested several values (in miles) for the depots’
radius of influence (RoI), and compared the distributions of response
times (figure 3a) and the rebalancing distance traveled by each
responder (figure 3b).

Our first observation is that increasing the RoI does not neces-
sarily increase performance; there is an optimal zone around RoI=3,
implying that encouraging responders to spread out is beneficial.
We also see that while Q-3’s median and 1st quartile response times
remained fairly consistent with the baseline, the upper quartiles
are reduced. This decreases the mean response time as well as its
variance, making the system more fair to all incidents.

We also observe that Q-2 and Q-3’s responders traveled less than
1 mile on average each balancing step.

5.2 MMCTS Rebalancing
Using an Oracle: We now examine MMCTS rebalancing. To de-
termine the potential of the MMCTS approach, we first compare
the two agent action models described in section 3.3.2 (Static Agent
Policy and Queue Rebalancing Policy) using an oracle. The oracle has
complete information regarding future incidents, which it supplies
to the MMCTS algorithms. We present the results for the response
time distributions in figure 4a and the average responder distance
traveled per rebalancing step in figure 4b.

Our first observation is that the MMCTS approach has high
potential. Using an oracle, it is able to significantly decrease the

(a) (b)

Figure 5: a) The response time distributions for each MMCTS param-
eter search experiment. b) Distributions of average miles traveled
by each responder at each balancing step of the MMCTS parameter
search experiment

response time distribution compared to the queue based policy
above. This is not surprising given that a standard MCTS algorithm
given perfect information should perform well given adequate time,
but it demonstrates that the MMCTS extensions of independent
action evaluation for each agent and action filtering are valid.

Secondly, we see that MR-1 (using a static agent policy) outper-
forms MR-2 (using the queue rebalancing policy).

Last, we observe that responders traveled between 2 and 4 miles
on average each during balancing step in these experiments, which
is significantly higher than the queuing approach.

Using An Incident Prediction Model: We now examine a
more realistic approach using an incident prediction model based
on survival analysis. Since the static agent policy performed better
in the oracle experiments, we use it for these experiments. There
are several hyper-parameters that can effect the performance of
the algorithm, including

• MCTS Iteration Limit - the number of MCTS iterations car-
ried out before returning action scores.

• Rebalancing Period - the amount of time between rebalanc-
ing steps

• Distance Weight in Reward Functionψ - This weight deter-
mines the importance of the distance traveled in the reward
function

• Look-ahead Horizon - The amount of time MCTS looks into
the future

We vary these parameters to see their effect on the system. We
present the response time distributions of MMCTS using the inci-
dent model in figure 5a, and the average responder distance traveled
per rebalancing step in figure 5b.

We observe a significant drop in response time performance in
compared to the oracle experiments. We hypothesize that more
incident samples may be needed from the model, or improvements
to the state of the art prediction model may be needed. We also
see that different parameter choices lead to different performance
characteristics. For example, we see that changing the distance
weight has a large impact on the distance responders travel; users
with tight budgets for responder movement and maintenance will
want to pay close attention to this parameter.

Comparing the queue based policy with MMCTS, we see that
both improve the response time distributions compared to the base-
line. MMCTS is more configurable, but is also more sensitive to poor

8

hyper-parameter choices. With proper hyper-parameter choices,
both fulfil the constraints discussed in section 2.3 by having quick
dispatching decisions, allowing for limited communication, and
allowing users to control for distance traveled (i.e. wear and tear).

6 CONCLUSION
Principled approaches to Emergency Response Management (ERM)
decision making have been explored, but have failed to be imple-
mented into real systems. We have identified that a key issue with
these approaches is that they focus on post-incident decision mak-
ing. We argue that due to fairness constraints, planning should
occur between incidents. We define a decision theoretic model for
such planning, and implement both a heuristic search using queuing
theory and a Multi Agent Monte Carlo Tree Search planner. We find
that these approaches maintain system fairness while decreasing
the average response time to incidents.

7 ACKNOWLEDGEMENT
This work is sponsored by The National Science Foundation under
award numbers CNS1640624 and IIS1814958, and the Center for
Automotive Research at Stanford (CARS). We thank our partners
from Metro Nashville Fire Department and Metro Nashville Infor-
mation Technology Services in this work. We would also like to
thank Hendrik Baier (CWI) for insights and helpful discussions
regarding the paper.

REFERENCES
[1] Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. 2002. Finite-time analysis of

the multiarmed bandit problem. Machine learning 47, 2-3 (2002), 235–256.
[2] Craig Boutilier. 1996. Planning, learning and coordination in multiagent decision

processes. In Proceedings of the 6th conference on Theoretical aspects of rationality
and knowledge. Morgan Kaufmann Publishers Inc., 195–210.

[3] Daniel Claes, Frans Oliehoek, Hendrik Baier, and Karl Tuyls. 2017. Decentralised
online planning for multi-robot warehouse commissioning. In Proceedings of the
16th Conference on Autonomous Agents and MultiAgent Systems. International
Foundation for Autonomous Agents and Multiagent Systems, 492–500.

[4] One Concern. 2017. Artificial Intelligence: A GameChanger for Emergency Response.
Technical Report. One Concern.

[5] Jeffrey Dean and Sanjay Ghemawat. 2008. MapReduce: Simplified Data Processing
on Large Clusters. Commun. ACM 51, 1 (Jan. 2008), 107–113. https://doi.org/10.
1145/1327452.1327492

[6] Stephen F Dean. 2008. Why the closest ambulance cannot be dispatched in an
urban emergency medical services system. Prehospital and disaster medicine 23,
2 (2008), 161–165.

[7] Johannes Fürnkranz and Tobias Scheffer. 2006. Machine Learning: ECML 2006:
17th European Conference on Machine Learning, Berlin, Germany, September 18-22,

2006, Proceedings. Vol. 4212. Springer Science & Business Media.
[8] Natarajan Gautam. 2012. Analysis of queues: methods and applications. CRC

Press.
[9] Mohammad Ghavamzadeh and Sridhar Mahadevan. 2006. Learning to Cooperate

using Hierarchical Reinforcement Learning. (2006).
[10] Shenyang Guo. 2010. Survival analysis. Oxford University Press.
[11] Sean K Keneally, Matthew J Robbins, and Brian J Lunday. 2016. Amarkov decision

process model for the optimal dispatch of military medical evacuation assets.
Health care management science 19, 2 (2016), 111–129.

[12] Levente Kocsis and Csaba Szepesvári. 2006. Bandit based monte-carlo planning.
In European conference on machine learning. Springer, 282–293.

[13] Ayan Mukhopadhyay, Geoffrey Pettet, Chinmaya Samal, Abhishek Dubey, and
Yevgeniy Vorobeychik. 2019. An online decision-theoretic pipeline for responder
dispatch. In Proceedings of the 10th ACM/IEEE International Conference on Cyber-
Physical Systems. ACM, 185–196.

[14] Ayan* Mukhopadhyay, Geoffrey* Pettet, Chinmaya Samal, Abhishek Dubey,
and Yevgeniy Vorobeychik. 2019. An Online Decision-Theoretic Pipeline for
Responder Dispatch. In ACM/IEEE International Conference on Cyber-Physical
Systems. ACM, 12–pages.

[15] Ayan Mukhopadhyay, Yevgeniy Vorobeychik, Abhishek Dubey, and Gautam
Biswas. 2017. Prioritized Allocation of Emergency Responders based on a
Continuous-Time Incident Prediction Model. In International Conference on
Autonomous Agents and MultiAgent Systems. International Foundation for Au-
tonomous Agents and Multiagent Systems, 168–177.

[16] Ayan Mukhopadhyay, Zilin Wang, and Yevgeniy Vorobeychik. 2018. A Decision
Theoretic Framework for Emergency Responder Dispatch. In Proceedings of the
17th International Conference on Autonomous Agents and MultiAgent Systems,
AAMAS 2018, Stockholm, Sweden, July 10-15, 2018. 588–596. http://dl.acm.org/
citation.cfm?id=3237471

[17] Ayan Mukhopadhyay, Chao Zhang, Yevgeniy Vorobeychik, Milind Tambe, Ken-
neth Pence, and Paul Speer. 2016. Optimal Allocation of Police Patrol Resources
Using a Continuous-Time Crime Model. In Conference on Decision and Game
Theory for Security.

[18] Geoffrey Pettet, Saideep Nannapaneni, Benjamin Stadnick, Abhishek Dubey,
and Gautam Biswas. 2017. Incident analysis and prediction using clustering
and Bayesian network. In 2017 IEEE SmartWorld, Ubiquitous Intelligence & Com-
puting, Advanced & Trusted Computed, Scalable Computing & Communications,
Cloud & Big Data Computing, Internet of People and Smart City Innovation (Smart-
World/SCALCOM/UIC/ATC/CBDCom/IOP/SCI). IEEE, IEEE, San Francisco, CA,
USA, 1–8.

[19] H. Purohit, S. Nannapaneni, A. Dubey, P. Karuna, and G. Biswas. 2018. Struc-
tured Summarization of Social Web for Smart Emergency Services by Uncertain
Concept Graph. In 2018 IEEE International Science of Smart City Operations and
Platforms Engineering in Partnership with Global City Teams Challenge (SCOPE-
GCTC). 30–35. https://doi.org/10.1109/SCOPE-GCTC.2018.00012

[20] Khashayar Rohanimanesh and Sridhar Mahadevan. 2003. Learning to take con-
current actions. In Advances in neural information processing systems. 1651–1658.

[21] Blind Fire Department (suppressed for review). 2018. Private Communication.
(2018).

[22] Wikipedia contributors. 2019. Computer-aided dispatch — Wikipedia, The
Free Encyclopedia. (2019). https://en.wikipedia.org/w/index.php?title=
Computer-aided_dispatch&oldid=916096608 [Online; accessed 20-October-2019].

[23] Yisong Yue, LavanyaMarla, and Ramayya Krishnan. 2012. An efficient simulation-
based approach to ambulance fleet allocation and dynamic redeployment. In
Twenty-Sixth AAAI Conference on Artificial Intelligence.

9

https://doi.org/10.1145/1327452.1327492
https://doi.org/10.1145/1327452.1327492
http://dl.acm.org/citation.cfm?id=3237471
http://dl.acm.org/citation.cfm?id=3237471
https://doi.org/10.1109/SCOPE-GCTC.2018.00012
https://en.wikipedia.org/w/index.php?title=Computer-aided_dispatch&oldid=916096608
https://en.wikipedia.org/w/index.php?title=Computer-aided_dispatch&oldid=916096608

	Abstract
	1 Introduction
	2 System Model
	2.1 Incident Arrival
	2.2 Decision-Making Process
	2.3 Problem Definition

	3 Emergency Response with Rebalancing
	3.1 Problem Complexity
	3.2 Multi-Server Queue Based Rebalancing
	3.3 Decentralized Monte Carlo Tree Search Based Approach

	4 Experimental Setup
	4.1 Experimental Design

	5 Results and Discussion
	5.1 Queue Based Rebalancing Policy:
	5.2 MMCTS Rebalancing

	6 Conclusion
	7 Acknowledgement
	References

