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ABSTRACT

Efficient emergency response is a major concern in densely
populated urban areas. Numerous techniques have been
proposed to allocate emergency responders to optimize re-
sponse times, coverage, and incident prevention. Effective
response depends, in turn, on effective prediction of inci-
dents occurring in space and time, a problem which has
also received considerable prior attention. We formulate a
non-linear mathematical program maximizing expected in-
cident coverage, and propose a novel algorithmic framework
for solving this problem. In order to aid the optimization
problem, we propose a novel incident prediction mechanism.
Prior art in incident prediction does not generally consider
incident priorities which are crucial in optimal dispatch, and
spatial modeling either considers each discretized area inde-
pendently, or learns a homogeneous model. We bridge these
gaps by learning a joint distribution of both incident ar-
rival time and severity, with spatial heterogeneity captured
using a hierarchical clustering approach. Moreover, our de-
composition of the joint arrival and severity distributions
allows us to independently learn the continuous-time arrival
model, and subsequently use a multinomial logistic regres-
sion to capture severity, conditional on incident time. We
use real traffic accident and response data from the urban
area around Nashville, USA, to evaluate the proposed ap-
proach, showing that it significantly outperforms prior art
as well as the real dispatch method currently in use.
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1. INTRODUCTION
Increasing urban population density has led to a number

of major challenges, such as pollution, congestion, accidents,
and crime. To manage incidents, including fire and crime,
cities resort to diverse groups of emergency responders, in-
cluding fire and police departments. From the perspective
of a responder, two problems are pivotal: 1) how to respond
to emergencies as they occur, and 2) how to deploy limited
responder resources, such as fire depots and vehicles, so as to
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best anticipate, and respond to, potential future incidents.
We focus on the second problem.

Indeed, there have been a number of prior efforts con-
sidering how to best allocate responders in anticipation of
incidents (e.g., [34, 25, 32]). It is clear that to ensure effec-
tive deployment, a crucial subproblem is incident forecast-
ing in both space and time, and indeed, this issue has also
been extensively considered in prior art [17, 31, 35, 34, 25].
Nevertheless, there are several major gaps in the literature
which limit the practical applicability of the approaches to
date. First, forecasting methods tend to either learn dis-
tinct models for each spatial area, resulting in higher model
variance or requiring simpler models and limiting generaliz-
ability, or learn a single homogeneous model for most of the
urban area, potentially failing to account for important spa-
tial heterogeneity. Second, many forecasting methods can-
not capture the dependence of incident rates on arbitrary
exogenous features, such as weather, time of day, and day
of the week (except Mukhopadhyay et al. [25]; see below).
Third, a crucial factor rarely considered is incident severity:
clearly, responders need to prioritize their response based
on urgency, and both incident forecasting methods, and re-
sponder allocation, must therefore be explicitly designed to
account for this.

In this paper, we systematically address the three identi-
fied gaps in the prior literature by considering the problem
of optimal location of responder stations and distribution of
responders in these, the latter being the key distinction be-
tween this and the well-known facility location problem [13,
21]. We develop a novel optimization problem to maximize
incident density coverage with restrictions on waiting times
and considering incident priorities, drawing on results from
queuing theory. Our approach builds on the optimization
method by Silva and Serra [32], but they restrict the ap-
proach to a single responder per station, a major limitation
in practice. Our extension entails a non-trivial technical
contribution and makes the approach far more practically
viable. We note that while most prior work deals with re-
sponse optimization and incident prediction separately, the
latter is a fundamental requirement of the former. Thus,
in order to aid our optimization model and validate it, we
develop a hierarchically structured probabilistic model to
predict time, location, and severity of urban incidents, that
can capture the effect of arbitrary covariates on incident oc-
currence. By decomposing the prediction into a separate
component involving incident time, and a component per-
taining to severity, we make use of survival analysis [9] to
learn the incident arrival distribution in continuous time,



and a multinomial logistic regression [4] to learn the distri-
bution over severity categories. Our use of survival analysis
in forecasting incident arrivals is similar to Mukhopadhyay
et al. [25]. Our key advance on this approach is to learn
spatial granularity of the model from data: specifically, we
combine survival analysis with hierarchical clustering to bal-
ance spatial heterogeneity and model variance.

We evaluate our proposed approach using traffic accident
data obtained from the fire department of Nashville, US
(perhaps counterintuitively, traffic accidents comprise the
most common incident type to which this fire department re-
sponds). We demonstrate that our approach is a significant
improvement over the state of the art in terms of incident
prediction efficacy, and our method for locating responder
stations substantially improves upon the current approach
actually in use in this US city.

2. RELATED WORK
The problem of optimally placing responders in space to

respond to incidents has been well explored in literature.
As an important first step, we recognize the fact that there
are multiple measures of optimality in this context. The
most natural measure of the quality of response is response
time, and considerable research has been devoted to this
[37, 36, 25]. Another common criterion is to maximize the
coverage area of response vehicles [23]. It is also natural to
combine these goals and create allocation algorithms that
try to achieve both [32, 10].

We focus specifically on coverage models, that aim to max-
imize the reach of service providers to potential demand
nodes. In particular, the Maximum Coverage Problem [7]
looks at optimally locating p facilities such that the maxi-
mum number of demand nodes can be served. The problem
of locating facilities on a network to minimize travel dis-
tance to potential nodes was actually formulated before this
[14]. The problem of minimizing the average service time
from a single server location where requests are queued in
the absence of a server has also been explored before [3].
Another approach is to look at minimizing the expected re-
sponse time to the furthest point in the network from a single
server location [6]. A common issue with these approaches
is that responder depots and responders are used synony-
mously, meaning that one responder is placed at a location.
In practice, this is typically not the case, severely limiting
the ability to apply such methods in the field. Responder
services typically rent spaces that can house multiple re-
sponders, which calls for the dual optimization over depot
locations as well as the number of responders per depot. We
extend prior work concerning maximizing coverage with re-
strictions on waiting times for incidents [32] to tackle this
dual optimization scenario.

The problem of incident forecasting has also been exten-
sively explored. This includes prediction regarding freeway
accidents [33, 1], traffic congestion prediction [2], crime pre-
diction [17, 31, 34, 25], fire accident predictions [35], and
many more. It has been noted in the literature that freeway
accidents are generally difficult to predict, due to an inher-
ent random nature of these accidents and spatially varying
factors [27]. Recently, freeway accidents have been predicted
using panel data analysis approach that predicts incidents
based on both time-varying and site-specific factors [27]. An
extensive survey of the literature on crash prediction models
is presented in [20], which highlights the prevalence of Pois-

son distribution based models [5, 22, 29], and multiple linear
regression approaches [11, 28]. Further, there are incident
prediction approaches that are flexible enough to fit into this
domain [25]. These approaches treat accidents as homoge-
neous, meaning that the severity of accidents is not taken
into account, which is a crucial factor in practice. We con-
sider the problem of incident prediction as forecasting both
time and place of occurrence, as well as incident severity,
bridging a major gap in prior art.

3. OPTIMIZING RESPONDER PLACEMENT
A fundamental problem faced by emergency responding

agencies is to optimally allocate depots in space, allocate
response vehicles in depots, and assign vehicles to incidents.
Commonly, depots refer to fixed responder stations, such as
police and fire stations, which are pre-determined. In other
settings, depots can be periodically reallocated. For exam-
ple, in our target domain of fire department emergency re-
sponse (see Section 5), the emergency vehicles are typically
stationed in rented parking lots, which can therefore be reas-
signed if a need arises. Nevertheless, the time scales of depot
and response vehicle allocations are typically different. Our
approach can be modified directly if we wish to reassign ve-
hicles to a fixed set of depots at an hourly or daily time scale,
with the full problem (including depot allocation) solved at
longer (say, monthly) time scales.

While the notion of optimality in emergency response prob-
lems can vary, we focus on the problem of maximizing cov-
erage, one of the most common variants in this domain. To
start, we discretize space into areas (henceforth referred as
a set of grids G). Suppose that for each grid gi, incidents of
severity k arrive at a (predicted) rate λk

i . We assume that a
predictive model for the concerned incident type is available.
We describe one such model in Section 4. Given the arrival
rates, for each grid gi and incident severity k, jointly referred
to as a pair (i, k) henceforth, we aim to allocate a depot d to
respond to the associated incidents. We refer to a successful
assignment of (i, k) to a responder depot d as covering the
pair. We note that a measure of importance of such a pair
is its predicted arrival rate λk

i . We try to maximize the to-
tal arrival rate that the model covers by optimally placing
depots in a subset of the available grids, where each depot
can hold a collection of responder vehicles. Thus, given a
set G of discrete grid locations, p different responders (emer-
gency vehicles) and a budget to allocate b different depots,
we want to find the optimal location of the depots and the
distribution of vehicles in such depots.

We now describe the formal structure of this optimiza-
tion problem. For simplicity, we index depots by their grid
numbers, which means that a depot located in grid j is re-
ferred to as depot j. Moreover, when there is no responder
available in a depot to serve an incident that is assigned to
it, we assume that the incident enters a waiting queue. We
assume that each depot maintains its own queue which is or-
dered according to incident priorities but is non-preemptive
at service time, which means that an incident already getting
responded to is never left midway to attend to an incident of
higher priority. In our model, lower values of k correspond to
higher priorities. A similar approach has been studied previ-
ously with the aim of maximizing the total population cov-
ered [32]. However, we look at a generalized problem struc-
ture where more than one responder can be placed at a lo-
cation, which significantly complicates the queuing model in



consideration by changing a single-responder priority queue
model to a multi-responder priority queue model.

Formally, we consider the following optimization problem.

max
x,y,d

Z =
∑

k

∑

j

∑

i

λk
i x

k
ij (1a)

s.t. : xk
ij ≤ dj ∀i, j ∈ I, ∀k (1b)

xk
ij ≤ yj ∀i, j ∈ I, ∀k (1c)
∑

j∈I

xk
ij ≤ 1 ∀i ∈ I, ∀k (1d)

yj ≤ yjdj ∀j ∈ I (1e)
∑

j∈I

yj ≤ p (1f)

∑

j∈I

dj ≤ b (1g)

wk
j ≤ τk ∀j, ∀k (1h)

yj ∈ [1..p] ∀j ∈ I (1i)

xj , dj ∈ {0, 1} ∀j ∈ I (1j)

where I is the set that indexes over all grid numbers, dj
is a binary decision variable which is 1 if there is a depot
located at grid gj , yj is a decision variable that indicates
how many responders are placed at depot j and xk

ij is a
binary decision variable which is 1 if depot j is assigned
to respond to the pair (i, k) and 0 otherwise. We ensure
that service standards are met by enforcing constraints that
the mean waiting time (denoted by wk

j where j and k cor-
respond to the depot number and the priority respectively)
at all depots is less than a pre-specified time limit τk. We
assume that this information is user-specified, depending on
the type of incident and the service quality required. The
objective (1a) aims to maximize the total coverage by the re-
sponders. Constraint (1b) ensures that calls are assigned to
locations that have depots, constraint (1c) forces that such
depots have at least one responder assigned and constraint
(1e) ensures that responders are placed in locations which
are depots. Further, constraint (1d) ensures that each pair
(i, k) is assigned at most once. Constraints (1f) and (1g) are
budget restrictions on responders and depots respectively
and finally, constraint (1h) ensures that the mean waiting
time for incidents is within a pre-specified tolerance.

Before we attempt to solve this problem, we present a
method to calculate the waiting time for a given depot. Re-
call that arrival rates are available from the incident predic-
tion model that we describe later in Section 4. We model
the inter-arrival time of incidents as exponential, and con-
sequently the arrivals are Poisson distributed. We make
the standard assumption that the service times are expo-
nential as well, giving us a queuing model with memory-
less arrivals, memoryless service times and multiple servers,
commonly represented as a m/m/c priority-queue model us-
ing the Kendall’s notation [19]. Such a model is difficult to
analyze when multiple priority events are present and each
follows its own service time distribution [16]. We make a
simplifying assumption that although different severities fol-
low different arrival distributions and have different service
time constraints in the optimization model, they follow the
same service distribution. Thus, in our formulation, we as-
sume that all priorities are served with a common exponen-

tial distribution with mean µ. This is an assumption that
is realistic in many real-life applications as severities often
represent the urgency with which an incident needs to be
responded to and is not an indicator of actual service time.
Moreover, analysis on our dataset revealed that learning the
same distribution across event severities appears to be nearly
as good as learning heterogeneous distributions (see Section
5, Table 2). We present a sketch of the derivation for the
waiting time of our queuing model here. The full derivation
can be found in prior literature in queuing theory [8].

3.1 Calculating Waiting Time
Consider that an incident of priority k happens and has

to enter the waiting queue for depot j with yj responders
because n0 incidents of higher or equal priority are already
waiting to be serviced. Also, let Λ denote aggregate arrival
rates, such that Λk

j =
∑

i∈I x
k
ijλ

k
i ,and let Λj =

∑

k Λ
k
j .

Λk
j thus measures the rate of arrival of incidents of priority

k for all grids that depot j serves. Let us assume that it
takes t0 time to service n0 incidents. However, in time t0,
all arrivals of higher priority will supersede our event in the
queue. Let there be n1 such events which can be served
in time t1. Again, there can be further arrivals in t1, and
so on. Our incident, therefore, must wait for time

∑

∞

l=1 tl
before it is serviced. Since we want the expected waiting
time, we want to calculate E(

∑

∞

l=1 tl). This can be calcu-
lated by looking at the conditional waiting time E(tl+1|tl),

which is given by 1
yjµ

∑k−1
q=1 Λ

q
j tl, where µ is the mean ser-

vice time distribution. Now, for any h, E(
∑h+1

l=0 tl) is given

by E(
∑h

l=0 tl + E(th+1|th)). By induction and considering
h + 1 → ∞, we get an expression for the average waiting
time for an incident with priority k as

wk
j =

π
yjµ

(1− 1
yjµ

∑k−1
q=1 Λ

q
j)(1−

1
yjµ

∑k

q=1 Λ
q
j)
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µ

)yj
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(

1−
Λj

yjµ
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µ
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+
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(
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µ

)r

yj !y
r−yj
j

]

We note that the queuing model assumes that the service
time distribution is memoryless. This is a concern as the
time taken by a responder to travel to an incident is not
distributed exponentially. To tackle this, we assume that a
depot can only respond to an incident if it is located within
a small distance s of the incident, which in practice is suffi-
ciently small that it can be treated as constant with respect
to the overall service time.

3.2 Adaptive Random Search for Responder
Optimization

The main challenge in solving mathematical program (1)
is the fact that Constraints (1h) are non-linear and non-
convex. We tackle this problem using greedy random adap-
tive search (GRASP). Such a procedure has been previously
used in coverage maximization [32], but this previous ap-
proach cannot be directly applied when depots can have mul-
tiple responders as the search space becomes significantly
more complex. We therefore propose a novel algorithm,



Algorithm 1 Restricted Candidate List Construction

1: INPUT: λ; p, K
2: OUTPUT: RCL : Restricted Candidate List
3: Initialize S : φ
4: Create sorted list SN of candidate sites with respect to

population/demand rate.
5: for g = 1 to b do ,
6: Assign p servers to g grids according to λ.
7: while |S| 6= p do

8: for j ∈ SN do

9: for k = 1 to K do

10: if NoDemands(j) then
11: Distributeb(j, j̄)
12: else

13: for i ∈ Dj do

14: if wk
j < τk then

15: Set x
[k]
ij = 1

16: end if

17: end for

18: end if

19: Calculate Λk
j =

∑

i∈Dj
xk
ijλ

k
i ,

20: end for

21: end for

22: Construct RCL
23: select j∗ = RandomSelect(RCL)
24: Update S := S ∪ j∗

25: Remove demand nodes assigned to j∗

26: end while

27: Calculate Zg

28: end for

29: Return Allocation S with highest Z.

Heuristic based Response Optimization of Coverage with
Queuing (HROCQ). We break up the algorithm into two
parts and describe the construction of the Restricted Can-
didate List in Algorithm 1 and the Local Search Phase in
Algorithm 2 in sequence.

We first describe the construction of the Restricted Can-
didate List (RCL; Algorithm 1). We use Dj to denote the
set of all nodes within a distance s of node j and Dij to
denote the ith element of this set. We use j̄ to denote all
grids that have never been assigned a responder in the course
of our iterative algorithm, Distributeib(a, h) as a method to
distribute responders from grid a to i grids in set h in pro-
portion to their demand rates (absence of i means that the
distribution is done to as many nodes as possible) with a
limit of b on the total number of grids that have responders,
and NoDemands(a) as a method that returns True if no
valid assignment can be made to node a and returns False
otherwise. We use |S| to denote the number of responders in
our solution set and ||S|| to denote the number of grids in S,
that we iteratively build. Also, consistent with the optimiza-
tion problem formulation, at any point in the algorithm, the
number of responders assigned to grid j is denoted by yj .

In order to decide the number of servers to be placed in a
depot, we first sort the depots according to their event de-
mand rate. We refer to this sorted node list as SN . Then,
for the gth run of the construction phase, we greedily assign
p responders (our budget) to the first g depot locations in
the SN , in proportion to their demand rates. Then, itera-
tively, for each node j that has been assigned a responder,

we inspect Dj . For each node i in Dj and priority k (start-
ing from the highest priority), we assign depot j to respond
to the pair (i, k). After making each assignment, we ensure
that no waiting time constraint is violated. We stop as-
signing calls to a depot when its waiting time constraint is
violated and move to the next depot location in SN . After
a phase of assignments, we look at the total demand rate
Λj . We identify the highest serving depot as j = argmaxiΛi

and its corresponding service rate as Λ
′

j . Then, we select
all nodes in our RCL that have a service rate of at least
γ Λ

′

j . Finally, to finish one run of an assignment, we ran-
domly select a node from the RCL and permanently fix its
assignments and remove the pairs assigned to it from being
considered in the future.

We stop when all depots that were assigned responders
have been assigned a pair of calls, or when there are no
more pairs to assign. This entire process is run b times, and
we get a feasible solution from each such run, which we then
carry forward to the local search phase, described next.

In the local search phase, described in Algorithm 2, we
iteratively look at each depot from the current solution and
deallocate all pairs assigned to it. We also deallocate the
responders that were assigned to this depot. We distribute
these responders iteratively to other potential depots not in
the current solution set in proportion to their demand rates.
We then calculate the updated objective value by replacing
the unassigned node with the newly assigned set of nodes
(referred to as Si), where i is the number of grids that have
received the freed responders. Finally, if any such assign-
ment improves the objective value, we accept the updated
solution. This method, repeated iteratively, performs a local
search both with respect to the depots and the number of
servers per depot.

Algorithm 2 Local Search Phase

1: INPUT: Restricted Candidate List
2: OUTPUT: Updated Solution
3: Z∗ := ZS , objective with current solution set S
4: for j in S do

5: S̄ := G\S Find all nodes that are not in the Solution
6: S := S \ j Deallocate assignments
7: Deallocate yj responders
8: for i = 1 to ||S̄|| do
9: Distributeib(j, S̄)

10: Calculate ZSi

11: end for

12: i∗ := argmaxi Z
Si

13: if ZSi∗

> Z∗ then

14: S = Si∗

15: Z∗ = ZSi∗

16: else

17: Revert Deallocations.
18: end if

19: end for

20: Return S

4. INCIDENT FORECASTING MODEL

4.1 Predicting Incident Arrival Time
Having looked at a model that can optimally allocate re-

sponders given predicted arrival rates, we now describe our



incident prediction model. In predicting incidents, we aim to
use data to learn a continuous-time model f(t|w) of incident
arrival given an arbitrary set of features w. A natural fit for
this problem is survival analysis, which has recently been
used to predict urban crime incidents [25]. We first provide
a brief overview of such survival models, and then present
our specific contribution. Survival Analysis is a broad class
of methods that model the distribution of time to an in-
cident arrival. Our specific approach uses an accelerated
time effect (AFT) model in which covariates increase or de-
crease the expected time to next incident [24]. Formally, a
survival model is ft(t|γ(w)), where ft is a probability dis-
tribution for a continuous random variable T representing
the inter-arrival time, which typically depends on covari-
ates w as log(γ(w)) = ρ0 +

∑

i ρiwi. The survival function
is defined as S(t) = 1 − Ft(t), where Ft(t) is the cumula-
tive distribution function of T . In order to model and learn
f(t) and consequently S(t), we chose the exponential distri-
bution, which has been widely used to model inter-arrival
time and has recently been used to predict urban incidents
[25]. Since we model time in an accelerated failure setting,
S(t|γ(w)) = S(γ(w) t).

Armed with the basic machinery of survival modeling, we
now address the specific question of interest: how to use
it to model spatio-temporal distribution of incident arrival.
A natural way to capture the incidents in space is to first
discretize space into areas (corresponding to the set G in
our responder optimization model) and then learn survival
models independently for each grid. The main concern with
this approach is overfitting: each grid induces relatively little
data, and there are surely considerable structural similarities
of the incident process across multiple grids that we can
leverage. On the other hand, learning a single “universal”
model for all grids may fail to capture all of the existing
heterogeneity not explicitly modeled in the feature space w.
We present a principled way of tackling this problem by
using a Hierarchical Clustering approach [18].

We first introduce some notation. For an incident, let the
feature set w be divided into two parts ws and wd, where ws

represents a set of static features, such as population den-
sity in a grid, which remain relatively stable, while wd will
denote dynamic features, such as the amount of rainfall in a
day or day of the week. We hypothesize that the set ws can
be used to identify similarity between distinct spatial grids.
To operationalize this hypothesis, we propose a hierarchical
clustering algorithm, shown in Algorithm 3 which we now
describe at a high level. We start by treating each grid as
a distinct cluster. Iteratively, we merge two grids that are
most similar, with similarity between grid i and grid j mea-
sured as the distance between associated wi

s and wj
s. At each

step, we check whether the updated set of clusters decreases
the predicted likelihood computed on the training data set
compared with the previous iteration by more than a pre-
defined limit, and stop as soon as marginal improvement in
likelihood is below this limit. We maintain a high likelihood
difference tolerance level initially to promote exploration of
the solution space, and lower it as the algorithm progresses.

4.2 Predicting Incident Severity
Predicting time to arrival for incidents is crucial, but treat-

ing all incidents as identical, as is commonly done, is prob-
lematic in practice. As an example, consider two grids g1
and g2 with similar rates of predicted traffic incidents with

Algorithm 3 Hierarchical Clustering

1: INPUT: Grids G, Static Features Ws

2: OUTPUT: Clusters C, with optimal likelihood
3: At iteration 0,initialize each grid gi as a cluster in list

C0.
4: for iteration m in max iter do

5: Calculate Similarity Matrix S, where Si,j = ||wi
s −

wj
s||

6: i, j = argminijS

7: Merge ci, cj into ci

8: Update wi
s =

(wi
s+wi

s)

2
9: Calculate Likelihood Lm

10: if Lm − Lm−1 > σ
m

then

11: Return Cm

12: end if

13: Return Cm

14: end for

one major difference: most incidents that happen in g1 re-
quire immediate medical attention while most incidents in
g2 are minor accidents. Focusing solely on incident rates
to allocate medical response vehicles would clearly be un-
wise from the perspective of saving lives. Consequently, it
is imperative that we also predict the severity of an inci-
dent or the urgency with which it needs a response. Here,
we point out that dispatching emergency response based on
predictions is undesirable, as real-time information must be
taken into account for accurate severity assessment. How-
ever, planning aggregate depot and responder locations ne-
cessitates predicting severities.

One way to capture incident severity is to use a distinct
model for each incident type. However, past incident predic-
tion models [12] have found that sacrificing the scale of data
for achieving heterogeneity can produce noisy estimates, as
it limits the data available for learning each distribution.
We address this issue by learning a joint distribution over
arrival time t and incident severity k, f(t, k|w), where k is
a discrete ordinal random variable representing the severity
class of the incident from K possibilities. As a first, step,
we represent f(t, k|w) = f(t|w)f(k|t, w). This decomposi-
tion helps us in two ways: first, our model for predicting
arrival times described in Section 4.1 can now be used as is
to learn the density over arrival times, and second, we can
now use the entire dataset to learn distribution over arrival
times and severities, rather than fracturing it by severity
category. To learn the severity distribution (conditional on
incident time and the feature vector w) f(k|t, w), we use the
multinomial logistic regression model [4].
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Multinomial logistic regression (MLR) generalizes the stan-
dard logistic regression by extending the output variable to
a general categorical variable. Formally, given a training set
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